دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضية

تمارين درس: الأعداد العقدية ص1 www.agamaths.wb.st

نيابة الخميسات

التمرين رقم 1:

أكتب الأعداد العقدية التالية على الشكل الجبرى.

$$(2-5i)(3+i)$$
 (2 · $(1-i)(1+i)$ (1)

$$(1+i)(1-2i)(1+3i)$$
 (4 (2-i)² (3)

$$\frac{(3+2i)(1+i)}{i-1}$$
 (6 ' $(2-i)^3$ (5)

$$\frac{2-3i}{1+i} + \frac{1-2i}{1-i}$$
 (8 \(\frac{1-i}{1+i}\)^2 (7

$$f(z) = \frac{1+z+z^2+z^3}{1+z}$$
; $(z \neq -1)$: is in the content of t

f(2+i); f(i-1); f(i) : حسب (1)

. f(z) = 0 : المعادلة C حل في C

🔀 🗷 التمرين رقم 3:

حل في C المعادلة:

$$(1+2i)z-(i-1)=i.z-3$$
 (1)

$$z.(z+i)(1-i-z) = 0$$
 (2)

.
$$z.(z+i)(1-i-z) = 0$$
 (2)

. $z.(z+i)(1-i-z) = 0$ (2)

. $(1-i).z = (2+i)^3$ (4 ، $\frac{1+2i.z}{1+2z} = i.\frac{z-1}{z+3}$ (3)

. $(2-i).z = \frac{1+i}{z-1}$ (6 ، $(1+i).z = (1-i)^4$ (5)

$$\left(\frac{2-i}{1-2i}\right)z = \frac{1+i}{1-3i} \left(6 \cdot (1+i)z = (1-i)^4 \right)$$

$$2.z - \overline{z} = 3 - 6i \ (8 \ (\frac{1 - i}{2 + i}).z = (2 - 3i)^2 \ (7)$$

$$-i.\overline{z} + (2-3i).z = 1$$
 (9

$$4.z^{2} + 8.|z|^{2} - 3 = 0 (10)$$

س التمرين رقم 4:

حل في C المعادلة :

$$z^2 - z + 2 = 0$$
 (2 · $z^2 + 4 = 0$ (1

$$2.z^2 + \sqrt{2}.z + 1 = 0$$
 (3)

$$4.z^2 - 12.z + 25 = 0$$
 (4

$$z^3 + 2z^2 + 2z + 1 = 0$$
 (5

$$z^3 + 3z^2 + 4z + 4 = 0$$
 (6)

چ التمرين رقم 5:

$$f(z):C\to C$$
 : z

$$z \rightarrow z^2 + 1$$

. $\operatorname{Im}(z)$ و $\operatorname{Re}(z)$ بدلالة $\operatorname{Re}(f(z))$ و $\operatorname{Im}(f(z))$ عدد حقيقي رائعداد العقدية z حيث الأعداد العقدية z

. z=x+.iy : نعتب $f(z)=\dfrac{z+i}{z-i}$; $(z\neq i)$ نعتب

y و x بدلالة f(z) أحسب الجزء الحقيقي و التخيلي ل . Im(z) = 0 حدد مجموعة الأعداد العقدية z حيث (2

(2) أكتب z بدلالة f(z) ثم أجب على السؤال 2).

(0; i; j) أ نشئ في المستوى المنسوب إلى م.م.م (0; i; j).

$$C\left(\frac{\sqrt{3}}{2} + \frac{1}{2}.i\right)$$
 ، $B\left(\frac{1}{1+i}\right)$ ، $A(-1+2.i)$: النقط

 \overrightarrow{BC} ، \overrightarrow{AC} ، \overrightarrow{AB} : 2) حدد لحق المتجهات

$$f(z) = \frac{2 + \overline{z}}{1 - \overline{z}}$$
; $(z \neq 1)$

z بدلالة راك الجزء الحقيقي و التخيلي ل f(z) بدلالة

بين أن مجموعة النقط M(z) عدد حقيقي (2) بين أن مجموعة النقط هي مستقيم محروم من نقطة .

ين أن مجموعة النقط M(z) حيث أن مجموعة النقط (3 أ و منعدم هي دائرة محرومة من نقطة ، محددا معادلتها .

﴿ التمرين رقم 9:

الیکن z = x + i.y عدد عقدی مخالف ل1- ،

$$(x; y \in IR)$$
 $f(z) = \frac{2.i.z - i}{z + 1}$

yبدلالة |z|; Im(f(z)); Re(f(z)); $\overline{f(z)}$ بدلالة و (1

|f(z)| = 1 حدد E₁ حيث E_1 حدد (2

صدد f(z) حدد وعة النقط النقط M(z) تخيلي ص

 E_1 و E_2 . E_3 و E_1 حدد نقط تقاطع المجموعتين

دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضياً

نمارين درس: الأعداد العقدية ص 2 www.agamaths.wb.st

الأستاذ: على الشريف نيابة الخميسات

ه التمرین رقم 10:

د مجموعة النقط M(Z) حيث :

$$\left(\frac{\sqrt{2}}{2} - i\right)Z + \left(\frac{\sqrt{2}}{2} + i\right)\overline{Z} + 1 = 0$$

كر التمرين رقم 11: حدد عمدة الأعداد العقدية التالية التي معيارها 1:

$$z = -1$$
; $z = 1$; $z = i$ (1)

$$z = -\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2} \; ; \; z = -\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2} \; (2)$$

$$z = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^3$$
 (3)

$$z = \left(\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2}\right) (4)$$

چ التمرین رقم 12:

أ كتب على الشكل المثلثي الأعداد التالية:

.
$$z = \sqrt{2}$$
; $z = -5\frac{\sqrt{3}}{2}$; $z = -2.i$; $z = 2.i$ (1)

.
$$z = i - \sqrt{3}$$
; $z = 1 - i$; $z = 1 + i$ (2)

$$z = \sqrt{2} \cdot \left(\frac{1+i}{1+i\sqrt{3}} \right) \quad (3)$$

$$z = \left(\frac{i}{1-i}\right)^4 \cdot z = \left(\frac{\sqrt{3}-i}{i-1}\right)^{12} (4)^4$$

$$z = 1 - \cos(\theta) - i.\sin(\theta)$$
 (5)

$$z = \sin(\theta) + 2.i.\sin^2(\frac{\theta}{2})$$
 (6)

.
$$z = \cos(\theta) + i(1 + \sin(\theta))$$
; $\theta \in [0; 2\pi]$ (7)

🗷 التمرين رقم 13:

أ كتب على الشكل الأسى الأعداد العقدية التالية:

.
$$2-2.i$$
; $1-i.\sqrt{3}$; $\frac{\sqrt{3}}{2} + \frac{1}{2}.i$ (1)

$$2.\sqrt{3}.(i-\sqrt{3})$$
; $5.(1+i)$; $\sqrt{3}-i$ (2)

.
$$(1+i.\sqrt{3})^6$$
; $(\sqrt{3}-i)^2$; $(1+i)^3$ (3)

چالتمرین رقم 14:

أخطط مايلي:

.
$$B(x) = \sin^3(x)$$
 · $A(x) = \cos^3(x)$ (1)

$$A(x) = \sin^4(x) - 3.\sin^2(x).\cos^2(x)$$
 (2)

$$B(x) = \sin^4(x)$$
 · $A(x) = \cos^3(x).\sin^3(x)$ (3)

$$A(x) = 4 \cdot \cos^{3}(x) - 3 \cdot \cos(x)$$
 (4)

$$B(x) = 3.\sin(x) - 4.\sin^3(x)$$
 (5)

هرالتمرين رقم 15:

(1) أ – حدد الجدرين المربعين للعدد

ب - حدد في المجموعة C حلي المعادلة :
$$Z^2 - 2.(3+i).Z + 5 + 10.i = 0$$

2) في المستوى العقدي المنسوب إلى م.م.م (\overrightarrow{o} ; $\overrightarrow{e_1}$; $\overrightarrow{e_2}$). نعتبر النقطتين A و B اللتين لحقاهما 1+2.i و 5. بين أن المثلث OAB قائم الزاوية .

ليكن θ عمدة للعدد 1+2.i أكتب العدد (3

چ التمرین رقم 16:

I) نعتبر (E) المعادلة التالية:

$$(E): z^3 - 4.(1-i).z^2 + 16.(1-i).z + 64.i = 0$$

(E) تحقق من أن العدد 4.i حل للمعادلة (E

2) حل المعادلة (E) .

3) نعتبر العدد بحيث

$$(k \in Z): z_k = \left(\frac{1}{4} + i \cdot \frac{\sqrt{3}}{4}\right)^k - \left(\frac{1}{4} - i \cdot \frac{\sqrt{3}}{4}\right)^k$$

$$z_k = \frac{i}{2^{k-1}}.\sin(\frac{k.\pi}{3})$$
: أنبث أن

$$z_{2001}=0$$
 : ثم آ ستنتج أ

$$(O;\overrightarrow{e_1};\overrightarrow{e_2})$$
 المستوى العقدي منسوب إلى م.م.م $(D;\overrightarrow{e_1};\overrightarrow{e_2})$ التكن A صورة العدد A و النقطة B صورة العدد A

.
$$z_{\rm B} = 2 - 2.i.\sqrt{3}$$
 و $z_{\rm A} = 2 + 2.i.\sqrt{3}$ بحيث (1) أ نشئ النقطة C صورة العدد بحيث :

$$z_{\rm C} = \frac{3}{2} z_{\rm A} + z_{\rm B}$$

ABC حدد عمدة
$$\frac{z_{\rm B}-z_{\rm C}}{z_{\rm A}-z_{\rm C}}$$
 و آ ستنتج طبيعة المثلث (2

 $[\]cos(3\theta)$ على الشكل الجبرى ثم آستنتج . $(1+2.i)^3$

دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضيا

تمارين درس: الأعداد العقدية ص 3 www.agamaths.wb.st

نيابة الخميسات

عرين رقم 17:

نعتبر العدد العقدي a حيث:

$$a = (\sqrt{3} - 1) + (\sqrt{3} + 1)i$$

 a^2 ا - أ - أ

 a^2 ب - حدد معيار و عمدة a^2

ج - أ ستنتج معيار و عمدة العدد العقدي a .

 $u = \frac{a}{2 + 2i}$: ليكن u العدد العقدي حيث (2

 $u = \cos(\frac{\pi}{6}) + i.\sin(\frac{\pi}{6})$: بین أن

نعتبر في C المعادلة :

(E):
$$Z^2 - i.(3.u^3 + 4.u^4).Z - 12.u^7 = 0$$

هو المجهول) Z هو المجهول) أ Z أ Z أ وجد بدلالة Z ، حلي المعادلة Z) . Z ب الشكل المثلثي و على الشكل الجبري كلا من حلى المعادلة (E).

$$f(z) = \frac{i.z-1}{(z+1)^2}$$
: نحو C نحو E نحو نحو نحو

 $f\left(\, z \, \right) = z \, \left(\, 1 \, \right)$ نعتبر في E المعادلة E المعادلة (1) بين أ ن المعادلة (1) تكافئ المعادلة :

 $z^3 + 2z^2 + (1-i) \cdot z + 1 = 0$ (2) $z^3 + 2z^2 + (1-i) \cdot z + 1 = 0$ (2) بين أن المعادلة (2) تقبل حلا على شكل $z^3 + 2z^2 + (1-i) \cdot z + 1 = 0$

a عدد حقیقی یجب تحدیده .

3) حل في E المعادلة (1).

 $|\mathbf{z}| = 1$: في هذا الجزء نفترض أن $\mathbf{z} = 1$

 $f(z) = Z : e^{i\omega z}$

 $\overline{Z} = i.z.Z$: بين أن (1

) آ ستنتج أ نه إ ذا كان Z عددا عقديا حقيقيا فإ نه منعدم (2)

$$(E): \left(\frac{Z-i}{\overline{Z}+i}\right)^2 = 2.i \left|\frac{Z}{Z+3.i}\right|$$

1) بين أن Z يكون حلا للمعادلة (E) إذا و فقط إذا كان

$$\left(\frac{Z-i}{\overline{Z}+i}\right)^2 = i \quad \text{o} \quad \left|Z+3.i\right| = 2.|Z|$$

 $(\overline{Z-i} = \overline{Z}+i)$ ($\overline{Z-i}$)

2) لتكن (ζ) مجموعة النقط M من المستوى العقدي

|Z+3.i|=2.|Z| : حيث Z ذات اللحق Z بحيث

بین أن (٤) دائرة مطلوب تحدید مرکزها و شعاعها (1) لتكن (Γ) مجموعة النقط M من المستوى العقدى ذات

$$\left(\frac{Z-i}{\overline{Z}+i}\right)^2 = i$$
 : نالحق Z بحيث

بین أن : (Γ) هی آتحاد مستقیمین بآسثناء نقطهٔ مطلوب

4) أستنتج عدد حلول المعادلة (E).

(E):
$$z^2 - (1 + \sqrt{3}) \cdot z + \frac{(2 + \sqrt{3}) - i}{2} = 0$$

1) أ - حدد الجذرين المربعين للعدد العقدي 2.i.

(E) ب - حل المعادلة (E) (E) بحيث (Im(z_1) (نرمز للحلين z_1 و z_2 بحيث

 $z_2 = 1 + \overline{z_1}$: أ – تحقق من أن $z_2 = 1 + \overline{z_1}$

 $\dot{P} = \dot{P}$ على الشكل المثلثي . ج - بين أن :

$$z_2 = \left(2\cos(\frac{\pi}{12})\right)\left(\cos(\frac{\pi}{12}) + i.\sin(\frac{\pi}{12})\right)$$

 $(O; \overrightarrow{u}; \overrightarrow{v})$ المستوى منسوب إلى م.م.م م (3 لتكن A و B و C النقط التي ألحاقها هي التوالي

$$b = \frac{\sqrt{3}}{2} - \frac{1}{2}i \qquad \qquad a = \frac{1}{2} + \frac{\sqrt{3}}{2}.i$$

$$c = \frac{2 + \sqrt{3}}{2} + \frac{1}{2}.i$$

 $AB = AC = \sqrt{2}$: ابین اُن $(\overrightarrow{AB}; \overrightarrow{AC})$ ب- أعط قياسا للزاوية

ج - أستنتج طبيعة المثلث ABC .

<u> جرالتمرين رقم 21:</u>

 $(O; \overrightarrow{u}; \overrightarrow{v})$ المستوى منسوب إلى م.م.م.م

g(z) = i : مدد على الشكل الجبري حلي المعادلة (1

.
$$z_2 = -\frac{\sqrt{3}}{2} - \frac{i}{2}$$
 و $z_1 = \frac{\sqrt{3}}{2} - \frac{i}{2}$: نضع (2

نعتبر في المستوى النقط: M_1 و M_2 و التي ألحاقها

على التوالي هي z_1 و z_2 و z_1 على التوالي على التوالي على التوالي على التوالي على التوالي على التوالي التوالي

دروس الدعم و التقوية تمارين درس: الأعداد العقدية ص 4 قسم: الثانية باكالوريا علوم رياضيا نيابة الخميسات www.agamaths.wb.st ا مستقيمية M_1 م M_2 مستقيمية (3) نضع: α و z'2 و 'z حلول المعادلة (1). z_2 ب – أكتب كلا من العدد ين z_1 و و z_2 على الشكل و لنكن $A(\alpha)$ و M(z') و M(z') صورها في $Z_1^{60} + Z_2^{60} + Z_2^{60}$ المستوى العقدى . . $C - \{-1; 1\}$ من Z من أن لكل Z من أن لكل الم بين أن المثلث 'AMM قائم الزاوية في النقطة A . ينجيلي صرف . $g(z) \Leftrightarrow (z+\overline{z})(|z|^2-1)=0$ M(z) His $\Delta M(z)$ His $\Delta M(z)$ His $\Delta M(z)$ ر التمرين 26: نعتبر في المجموعة C المعادلة التالية: بحیث g (z) عددا عقدیا تخیلیا صرفا . (E): $2.z^2 - (3+i)z + 2 = 0$ <u>التمرين 22:</u> . Z_2 Z_1 حدد Z_2 Z_1 حدد (1 ينعتبر في المجموعة C الحدودية التالية: z_1 أ كتب z_1 و z_2 على الشكل المثلثي . $P(z) = z^3 - 2(2+3.i)z^2 - 4.(1-5.i)z + 16.(1-i)$ lpha بين أن المعادلة P(z)=0 تقبل حلا حقيقيا lpha . $z_1^4 + z_2^4$: ثم آ ستنتج قيمة 2) أوجد الأعداد العقدية a و b و c بحيث يكون: $P(z) = (z - \alpha)(a \cdot z^2 + b \cdot z + c)$ كرالتمرين 27: نعتبر في المجموعة C المعادلة التالية: P(z) = 0: المعادلة C حل في (3 (E): $z^3 + (3 - i\sqrt{3})z^2 + 2.(1 - i\sqrt{3})z - i\sqrt{3} = 0$ مرالتمرين <u>23:</u> نعتبر في المجموعة C الحدودية التالية: 1) تحقق من أ ن 1- حل للمعادلة (E) . 2) حدد الحلول الأخرى لهذه المعادلة $P(z) = z^4 + 4z^3 + 8z^2 + 4z + 7$ 3) أعط الكتابة المثلثية لهذه الحلول . P(z) = 0 : حل للمعادلة i ن أ ن أ حل المعادلة : (1 لتكن M_1 و M_2 و M_3 صور هذه الحلول (4 P(z) = 0 بين أنه إذا كان z_0 حل للمعادلة (2 في المستوى العقدى بين أن المثلث $M_1M_2M_3$ متساوي الأضلاع . فإن $\overline{z_0}$ كذلك حل للمعادلة . . P(z) = 0: (3) $z = 2\cos^2(\theta) + i.\sin(2\theta)$: نعتبر العدد العقدي ر التمرين 24: نعتبر في المجموعة C الحدودية التالية: $\left(\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]\right)$: حيث $(\omega \in C)(E): z^2 - (2 + i\omega)z + i\omega - \omega + 2 = 0$ (E) حدد بدلالة ∞ حلى المعادلة (11) حدد معيار و عمدة z . 2) اعط الكتابة الأسية ل z حدد $_{\odot}$ بحيث يكون للمعادلة $({ m E})$ حل مز دوج $_{\odot}$ عدد ω بحيث يكون الجذرين مترافقين . ر التمرين 29: <u>ه التمرين 25:</u> انعتبر في المجموعة C الحدودية التالية : $z = -\frac{\sqrt{2}}{16}(1+i)$: نعتبر العدد العقدي 1) حدد معيار و عمدة z . 2) أستنتج الجذور المكعبة ل z . $P(z) = 4.z^2 + 2.(i-4)z^2 + 3.(3-2.i)z - 9 + \frac{9}{2}.i$ یتم α بین أن المعادلة : P(z)=0 تقبل حلا حقیقیا α بتم

2) أ - حدد العددين العقديين a و b بحيث:

P(z) = 0 : المعادلة C في P(z) = 0

 $P(z) = (z - \alpha)(4.z^2 + a.z + b)$

الأستاذ: على الشريف دروس الدعم و التقوية تمارين درس: الأعداد العقدية ص 5 قسم: الثانية باكالوريا علوم رياضية www.agamaths.wb.st . $\left|\mathbf{Z}_{1}\right|\left\langle \left|\mathbf{Z}_{2}\right|\right|$ بحيث بحيث المعادلة (E) على المعادلة أ ـ أ كتب على الشكل المثلثي كلا من Z_1 و Z_2 .

1) أكتب على الشكل المثلثي الاعداد العقدية النالية: $z_2 = -3 + 3.i$ $z_1 = 1 - i.\sqrt{3}$ ب – تحقق من أن $(-z_1)$ هو جذر مكعب للعد د ري ، $z_3 = \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}$ ثم أستنتج على الشكل الجبري الجذرين المكعبين الأخرين . Z_3^{12} و Z_2^4 و Z_1^{6} 3) المستوى منسوب إلى م.م.م م. لتكن A و B و C النقط

التي ألحاقها على التوالى m-2.i;2.m;i و نفترض أن m ليس تخيلي صرفا .

أ – بين أن النقط A و B و كغير مستقيمية . ب- خارج المثلث ABC ننشئ النقطة D بحيث يكون المثلثBCD متساوي الساقين و قائم الزاوية في D ليكن d لحق النقطة D.

> $d = \frac{3.m - i.m + 2 - 2.i}{2}$ $d = \frac{3.m + i.m - 2 - 2.i}{2}$

ج - حدد m لكي يكون الرباعي ABCD مربعا.

<u> التمرين 35:</u>

بين أ ن :

 $Z_0 = \cos\left(\frac{2\pi}{5}\right) + i.\sin\left(\frac{2\pi}{5}\right)$ ليكن $eta = Z_0^2 + Z_0^3$ نضع $lpha = Z_0 + Z_0^4$ نضع

 $Z_0^5 = 1$ (1)

 α و β هما حلى المعادلة (2) بين أن α

(E): $Z^2 + Z - 1 = 0$

 $\cos\left(\frac{2\pi}{5}\right)$ حدد α بدلالة (3

. $\cos\left(\frac{2\pi}{5}\right)$ على المعادلة (E) على خل (4

التمرين 36:

 $\left(0;i;j
ight)$ المستوى العقدي P منسوب إلى م.م.م 1) نعتبر التطبيق () المعرف على المجموعة *C بما يلي

> $(\forall z \in C^*) \varphi(z) = \frac{1}{2} \cdot \left(z + \frac{1}{z}\right)$ $\phi(z) = i$: أ – حل في C المعادلة

التمرين 31: اليكن

التمرين 30:

نيابة الخميسات

 $z = \frac{z_1}{z}$ o $z_2 = \frac{1}{2} \cdot (1 + i\sqrt{3})$ o $z_1 = 4 \cdot \sqrt{2} (1 - i)$

اً كتب z_1 و z_2 على الشكلين المثلثي و الجبري z_1

. $\sin\!\left(\frac{7\pi}{12}\right)$ و $\cos\!\left(\frac{7\pi}{12}\right)$: يتنج قيمتي $\cos\!\left(\frac{7\pi}{12}\right)$

التمرين 32:

أ كتب العددين $1+i.\sqrt{3}$ و $1-i.\sqrt{3}$ على الشكل المثلثي

 $(1+i.\sqrt{3})^n + (1-i.\sqrt{3})^n$: عثم أحسب :

ر التمرين 33 : نعتبر في المجموعة C المعادلة :

 $(E_n): z^n = (i.z - 2i)^n$

حيث n عدد صحيح طبيعي غير منعدم . (E_2) . . (1)

اً – أكتب كلا من العددين i + i و i - $\sqrt{3}$ - و - $\sqrt{3}$ على الشكل المثلثي .

ب – آ ستنج أ ن العدد $1+i.\sqrt{3}$ هو حل للمعادلة

(3 أ - في المستوى العقدي ، حدد مجموعة النقطM التي |z| = |i.z - 2i| : لحقها

ب- آ ستنتج أ ن جميع حلول المعادلة (E_n) تكتب على . $a \in IR$ حيث 1 + a.i

ھالتمرين 34:

ليكنm عدد عقدي غير منعدم ، نعتبر في C المعادلة : (E): $z^2 - (3m-2)z + 2m^2 - 4m \cdot i = 0$

1) حل المعادلة (E).

z_2 و ليكن m = 1 + i

الأستاذ: على الشريف نيابة الخميسات

 $0 \le \theta \le 2\pi$ و r > 0 و $z = r.e^{i.\theta}$ عبر بدلالة r و θ عن الجزء الحقيقي و عن الجزء التخيلي $\varphi(z)$ للعدد العقدي \mathbb{Z}

2) نعتبر التطبيق f من *P نحو P الذي يربط كل نقطة

. $M(\varphi(z))$ بالنقطة $(z \neq 0)$

 $_{
m C}$ لتكن $({
m C}_{
m c})$ الدائرة التى مركزها ${
m O}$ و شعاعها $_{
m c}$

 $M(z) \in (C_x) \Leftrightarrow \exists \theta \in [0; 2\pi[:z = r.e^{i\theta}]$

ب) بين أ ن صورة الدائرة $(C_{_{r}})$ بالتطبيق f توجد ضمن مخروطي (٤) يجب تحديد معادلة مختصرة له .

 $\mathrm{F'}(-1)$ و $\mathrm{F}(1)$ أ هليليج بؤرتاه $\mathrm{F}(1)$ و نقطة من (z') و (E_r) نقطة من (3) لتكن (3)

 $z'^2 + z^2 = 1$ المستوى P بحيث

أ) بين أن : 'OM'²= MF.MF'

 $(z'^2 = (1-z)(1+z) : (1+z)$

بین أ ن : عِبِ

 $2.\arg(z') \equiv \arg(1-z) + \arg(-1-z) + \pi[2\pi]$

€ التمرين 37 : نعتبر في C المعادلة :

(E): $m.z^4 + (m-1).z^2 - i = 0$

1) نفترض أن m عدد حقيقي حل المعادلة (E).

نفترض أن θ عدد عقدي معياره ρ و عمدته θ ، حل (2 المعادلة (E) .

و الحقيقية أ عداد (الحقيقية أ و عداد (الحقيقية أ و عدد المجموعة العقدية) التي من أجلها جميع حلول المعادلة (E) لها

<u> التمرين 38:</u> ين أنه:

 $\left[Im(z) \ge 0 \Rightarrow z = \left(\sqrt{\frac{|z| + R\acute{e}(z)}{2}} + i \cdot \sqrt{\frac{|z| - R\acute{e}(z)}{2}} \right) \right]$

$$\begin{cases} \operatorname{Im}(z) \ge 0 \Rightarrow z = \left(\sqrt{\frac{|z| + \operatorname{Re}(z)}{2}} + i \cdot \sqrt{\frac{|z| - \operatorname{Re}(z)}{2}}\right) \\ \operatorname{Im}(z) \ge 0 \Rightarrow z = \left(\sqrt{\frac{|z| + \operatorname{Re}(z)}{2}} - i \cdot \sqrt{\frac{|z| - \operatorname{Re}(z)}{2}}\right)^{2} \end{cases}$$

تمارين درس: الأعداد العقدية ص 6 www.agamaths.wb.st

ڪالتمرين 39: بين أنه:

 $\forall (z;z') \in \mathbb{C}^2$: $z.\overline{z'} = \left| \frac{z + z'}{2} \right|^2 - \left| \frac{z - z'}{2} \right|^2 + i. \left| \frac{z + i.z'}{2} \right|^2 - i. \left| \frac{z - i.z'}{2} \right|^2$

دروس الدعم و التقوية ء : الثانية باكالوريا علوم رياضية

 $\forall (z_1, z_2) \in C \times C$:

 $(|z_1 + z_2| = |z_1 - z_2| \Leftrightarrow (\exists \lambda \in IR / z_2 = i.\lambda.z_1))$ $\forall (z_1, z_2) \in \mathbb{C}^2$:

$$\left(\begin{cases} |z_1| = |z_2| = 1 \\ 1 + z_1 \cdot z_2 \neq 0 \end{cases} \Rightarrow \frac{z_1 + z_2}{1 + z_1 \cdot z_2} \in IR \right)$$

ر التمرين 41 : حل في C المعادلات التالية :

 $z^4 - (5-14.i)z^2 - 2(5.i+12) = 0$

$$\left(\frac{z+i}{z-i}\right)^{3} + \left(\frac{z+i}{z-i}\right)^{2} + \frac{z+i}{z-i} + 1 = 0$$
 (2)

$$(z+i)^n = (z-i)^n$$
, $n \in IN, n \ge 2$ (3)

$$z + \bar{z} + j(z+1) + 2 = 0$$
 (4)

≥ التمرين 42 : بين أنه :

 $\forall z \in C$:

$$\frac{\left|R\acute{e}(z)+Im(z)\right|}{\sqrt{2}} \le z \le \left|R\acute{e}(z)\right| + \left|Im(z)\right|$$

 $\forall z \in C$:

 $\forall n \in IN^*, \forall \theta \in IR$

$$\sum_{k=0}^{n-1} cos \left(\theta + \frac{2.k\pi}{n}\right) = \sum_{k=0}^{n-1} sin \left(\theta + \frac{2.k\pi}{n}\right) = 0$$

 $n \in IN /, \left(\sqrt{3} + i\right)^n \in IR$: حدد

﴿ 45 :

$\frac{z-1-i}{} \in IR \quad (1$ دروس الدعم و التقوية تمارين درس: الأعداد العقدية ص 7 قسم: الثانية باكالوريا علوم رياضية www.agamaths.wb.st

 $0 \le \theta \le 2\pi$ و $r \ge 0$ حيث $z = r.e^{i.\theta}$ و $z = r.e^{i.\theta}$ بين أنه: عبر بدلالة r و θ عن الجزء الحقيقي و عن الجزء التخيلي

 $_{\cdot}$ للعدد العقدى $_{\cdot}$ $_{\cdot}$

2) نعتبر التطبيق f من*P نحو P الذي يربط كل نقطة . $M(\varphi(z))$ بالنقطة M(z)

 \cdot ر و شعاعها \cap الدائرة التي مركزها \cap و شعاعها \cap

الأستاذ: على الشريف

أ) بين أ نه :

 $M(z) \in (C_r) \Leftrightarrow \exists \theta \in [0; 2\pi[:z = r.e^{i\theta}])$ ب) بين أن صورة الدائرة (C_{\perp}) بالتطبيق f توجد ضمن مخروطي (E) يجب تحديد معادلة مختصرة له . F'(-1) و F(1) أهليليج بؤرتاه أ (E_1) و

نقطة من (z') و (E_r) نقطة من (3) لتكن (3) $z'^{2}+z^{2}=1$ بحيث P المستوى

أ) بين أن : 'OM'²= MF.MF') بين أن

$$(z'^2 = (1-z)(1+z): (1+z)$$
 (لا حظ أن

$$2.\arg(z') \equiv \arg(1-z) + \arg(-1-z) + \pi[2\pi]$$

ڪالتمرين 37:

نعتبر في C المعادلة :

(E):
$$m.z^4 + (m-1).z^2 - i = 0$$

حيثm بار امتر .

1) نفترض أن m عدد حقيقي حل المعادلة (E). نفترض أن \mathfrak{p} عدد عقدى معياره \mathfrak{g} و عمدته \mathfrak{g} ، حل \mathfrak{g}

المعادلة (E) .

3) حدد المجموعة (٢) مجموعة الأعداد (الحقيقية أو العقدية) التي من أجلها جميع حلول المعادلة (E) لها نفس المعبار

≥ التمرين <u>38:</u> بين أنه:

 $\forall z \in C$: $|\operatorname{Im}(z) \ge 0 \Rightarrow z = \left(\sqrt{\frac{|z| + \operatorname{R\acute{e}}(z)}{2}} + i \cdot \sqrt{\frac{|z| - \operatorname{R\acute{e}}(z)}{2}}\right)$

$$\begin{cases} \operatorname{Im}(z) \ge 0 \Rightarrow z = \left(\sqrt{\frac{|z| + \operatorname{R\acute{e}}(z)}{2}} - i\sqrt{\frac{|z| - \operatorname{R\acute{e}}(z)}{2}}\right)^{2} \end{cases}$$

ڪالتمرين 39:

 $\forall (z:z') \in \mathbb{C}^2$:

 $z.\overline{z'} = \left| \frac{z + z'}{2} \right|^2 - \left| \frac{z - z'}{2} \right|^2 + i. \left| \frac{z + i.z'}{2} \right|^2 - i. \left| \frac{z - i.z'}{2} \right|^2$

 $\forall (z_1, z_2) \in C \times C$:

 $(|z_1 + z_2| = |z_1 - z_2| \Leftrightarrow (\exists \lambda \in IR / z_2 = i.\lambda.z_1))$ $\forall (z_1, z_2) \in \mathbb{C}^2$:

$$\left(\begin{cases} |z_1| = |z_2| = 1\\ 1 + z_1.z_2 \neq 0 \end{cases} \Rightarrow \frac{z_1 + z_2}{1 + z_1.z_2} \in IR \right)$$

$$z^4 - (5-14.i)z^2 - 2(5.i+12) = 0$$

$$\left(\frac{z+i}{z-i}\right)^{3} + \left(\frac{z+i}{z-i}\right)^{2} + \frac{z+i}{z-i} + 1 = 0$$
 (2)

$$(z+i)^n = (z-i)^n, n \in IN, n \ge 2$$
 (3)

$$z + \bar{z} + i(z+1) + 2 = 0$$
 (4

 $\forall z \in C$:

 $\frac{\left|R\acute{e}(z) + Im(z)\right|}{\sqrt{2}} \le z \le \left|R\acute{e}(z)\right| + \left|Im(z)\right|$

سن أ نه · $\forall n \in IN *, \forall \theta \in IR$

 $\sum_{k=0}^{n-1} \cos \left(\theta + \frac{2.k\pi}{n}\right) = \sum_{k=0}^{n-1} \sin \left(\theta + \frac{2.k\pi}{n}\right) = 0$

 $n \in IN /, \left(\sqrt{3} + i\right)^n \in IR$ حدد :

ھالتمرين 45: z حد د مجموعة النقط M ذات اللحق z $\frac{z-1-i}{z+1} \in IR \quad (1)$ تمارين درس: الأعداد العقدية ص 8 دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضية www.agamaths.wb.st معادلته $-1 = 4.x + 4.y^2 = -1$ معادلته أرسمه

﴿ التمرين 49 :

: ليكن
$$u=a+b.i$$
 ليكن (1 $b\in IR$ و $a\in IR$

?
$$arg(u) = \frac{\pi}{4}$$
 ایکون b و a ایکون (أ

$$|\mathbf{u}| = \sqrt{2}$$
 ليكون \mathbf{a} و \mathbf{a} ليكون (ب

$$m=\alpha+i.\beta$$
 حيث $m=\alpha+i.\beta$ حيث (2 کين $\alpha\in IR$ و $\alpha\in IR$

لتكن M صورة العدد العقدي .

حل المعادلة في C .

(E)
$$z^2 - (2+i.m)z + i.m + 2 - m = 0$$
 أحد الحلين غير مرتبط بالعدد m ، أحسب معياره و عمدته .الحل الآخر مرتبط بالعدد m ، أحسبه بدلالة و (3) أ – نعتبر قيم البار امتر m بحيث يكون لحلي المعادلة (E) نفس المعيار .

أ وُجِد في هذه الحالة المجموعة (C) للنقط M ، آ رسمها ب) نعتبر قيم البار امتر m بحيث يكون لحلى المعادلة (E) نفس العمدة ، بر هن على أن مجموعة النقط M هي

نصف (Δ) مستقیم آرسمه . ج) برهن على أنه توجد قيمة وحيدة m بحيث يكون للمعادلة (E) حل مزدوج.

أ وجد النتيجة السابقة مباشرة حسابيا

ر التمرين 50 : 1 (1) حل المعادلة في C .

$$z^{2} - \lambda \cdot (1 + 2 \cdot i) \cdot z + 2 \cdot i \cdot \lambda^{2} = 0$$

 λ بارامتر عقدي غير منعدم λ

و Z_2 هما حلا المعادلة و M_0 و Z_1 صورتاهما في المستوى العقدي .

و آ ستنتج منه أ ن المثلث arg $\left(\frac{Z_1}{Z}\right)$ و عسب (2

المتغير يبقى قائم الزاوية في O عندما يتغير $\mathrm{OM_{1}M_{2}}$

اً – أحسب معيار و عمدة العددين Z_1 و Z_2 بدلالة (3 معبار و عمدة لم

الأستاذ: على الشريف 2) مركز تعامد المثلث المكون من النقط ذا ت

- اللواحق z³, z², z
- 3) النقط ذات اللواحق 1+1, z+1, 1+1 مستقيمية
 - 4) النقط ذا ت اللواحق j,z,jz مستقيمية.
 - ر النقط ذا ت اللواحق z^{5} , z^{2} مستقيمية
- لنقط ذا ت اللواحق z^{2}, z^{2} تكون مثلث قائم زاوية z^{3}, z^{2}
 - النقط ذا ت اللواحق $z, \frac{1}{2}, z, 1$ متداورة . 7
- 8\$) النقط ذا ت اللواحق i.z,z,i تكون مثلث قائم الزاوية و 🙀 متساوي الساقين في i.

ڪالتمرين 46:

نعتبر النقطة M التي لحقها : m = a + i.b حيث : $(b \in IR)$ $a \in IR$

لتكن المعادلة:

- $z^{3} + (2-i)z^{2} + (m^{2} + 1 2.i)z i(1 + m^{2}) = 0$
 - 1) تأكد أن i حلا لهذه المعادلة ثم أ وجد حليها الآخرين .
 - 2) ما هي مجموعة النقط M ليكون للمعادلة على الاقل 🄀 حلان لهما نفس المعيار . أ رسم هذه المجموعة .

چالتمرين 47:

عددا عقدیا $x \in IR$ عددا عقدیا $\overline{z = x + i.y}$

$$Z = \frac{2}{3}.z - \frac{1}{3}.z - 1$$
 : و ليكن

M هي صورة z في المستوى العقدي :
 حدد في كل حالة مجموعة النقط M و أ رسمها :

$$Im(Z^2) = 1$$
 (3 · $Ré(Z^2) = 1$ (2 · $|Z| = 1$ (1)

ﷺ <u>الْمَرين 48 :</u> انعتبر العددين العقديين z و Z بحيث :

$$Z = \frac{1}{z^2} \quad \text{if } z = 2.\cos^2(\theta) + .i\sin^2(\theta)$$

$$\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[: \frac{\pi}{2}]$$

لنكن m و M صورتي z و Z في المستوى العقدي . [1] أحسب معيار و عمدة z و آ ستنتج معيار و عمدة Z .

$$Z = \frac{1}{4} \cdot (1 - tg^2(\theta)) - \frac{1}{2} \cdot i.tg(\theta)$$
 : پر هن أ ن

الذي (ω) أ – بر هن على أن m تنتمى إلى المنحنى (ω)

معادلته
$$x^2 + y^2 - 2.x = 0$$
 معادلته معادلته $x^2 + y^2 - 2.x = 0$

$$\Omega$$
ب – برهن على أن Ω تنتمي إلى المنحنى Ω الذي.

lpha ج – نفترض أن λ يتغير و هو محتفظ بعمدة ثابت

r=2 المجموعتين بأخذك

ما هي مجموعتي النقطتين M_1 و M_2 أ رسم هاتين

 $|r\rangle 0$ يتغير و هو محتفظ بمعيار ثابت $|\lambda|$ نفترض أن $|\lambda|$

تمارين درس: الأعداد العقدية ص 9 الأستاذ: على الشريف نيابة الخميسات www.agamaths.wb.st

دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضية

ths.wb.st نيابة الخميسات M_2 ما هي مجموعتي النقطتين $\alpha \in \left] -\pi,\pi \right]$

ب
$$-$$
 آ ستنتج اً نه اِ ذا کا ن Z حقیقیا فاِ نه منعدما . $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \quad z = \cos(\theta) + i.\sin(\theta)$: نضع (2

 $\alpha = \frac{\pi}{2}$ أرسم هاتين المجموعتين بأخذك

أ - تأكد من أن:

$$1 + \sin(\theta) = 2 \cdot \cos^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

$$\frac{1+i}{\sqrt{3}-i}$$
 : الشكل المثلثي الشكل المثلثي الشكل المثلثي

$$\cos(\theta) = 2.\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right).\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

$$z^8 = \frac{1+i}{\sqrt{3}-i}$$
 : على المعادلة (2

ب – أكتب العددين i.z-1 و z+1 على الشكل المثلثي . ج - آ ستنتج كتابة Z على الشكل المثلثي .

 $1 + u + u^2 + \dots + u^n$ عدد عقدی أحسب u (2

 $Z^8 + Z^4 + 1 = 0$ | Land |

<u> التمرين 52:</u>

ھالتمرین 54: تم<u>ريق 25 - .</u> نعتبر التطبيق f في C المعرف بما يلي:

$$f(z) = z^3 + 4.\overline{z}$$

 $(y \in IR)$ و $x \in IR$ و z = x + i.y

النقطة M هي صورة z في المستوى العقدي . أ – أكتب f(z) بدلالة x و y على الشكل الجبري .

ب- حدد المجموعة (E) للنقط M بحيث يكون (E) عددا

رين 55:

 $Z^{12} = 1 : C$ على المعادلة في (1)

ثم أكتب حلولها على الشكل المثلثي

ج – حدد المجموعة (F) للنقط M بحيث يكون وحدا

 $z \in C : z^4 = 1 + i \cdot \sqrt{3}$ نعتبر اللمعادلة: 1) حل المعادلة ثم أعط الشكل المثلثي لكل حل من حلولها. 2) أعط الشكل الجبري لكل جذر من الجذرين المربعين

ه- أ ستعمل الصيغة الجبرية للعدد (f(z) لحل المعادلة:

 $u = i + \sqrt{3}$: Lake

د - أرسم صور الحلين في المستوى العقدي و أرسم المجموعتين(E) و (F).

 $v = \sqrt{\frac{2.\sqrt{2} + \sqrt{6}}{4}} + i.\sqrt{\frac{2.\sqrt{2} - \sqrt{6}}{4}}$: نضع (3

) ليكن التطبيق \hat{g} من ُ \hat{C} إ لى \hat{C} المعرف بما يلي :

 v^2 عط الشكل الجبري للعدد

$$\alpha \in IR^{*+}$$
 , $g(z) = z^2 + \alpha \cdot \frac{z}{z}$

 $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} : 0 \text{ is divisited}$

 $z = \sqrt{\alpha}.(\cos(\theta) + i.\sin(\theta))$: ا $g(z) = 2.\alpha.\cos(2\theta)$: بر هن على أن

. $\left(O; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ n.a.a. $\left(P; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ land $\left(A; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ M(z) نحو P الذي يربط النقطة S من P من P من P منحويل

 $g\left(z\right)=0$: حدد عمدة z ليكون z حلا للمعادلة g(z) = 0 : حلول المعادلة

 $z = (1 + i.\sqrt{3})z - \sqrt{3}$ بالنقطة (z') M'(z') بالنقطة دد طبیعة (Γ) مجموعة النقط M من P بحیث:

 $\|\overrightarrow{OM'}\| = \sqrt{3}.\|\overrightarrow{OM}\|$

التمرين 53:

المعرف بما يلي $C-\{-1\}$ المعرف بما يلي C

$$\varphi(z) = \frac{i \cdot z - 1}{(z+1)^2}$$

$$\varphi(z) = z$$
) حل المعادلة (I

﴿ التمرين 56:

علما أن إحدى حلولهاتخيلي صرفا . $P(Z) = z^3 + (1 + 3.ie^{i\theta})z^2 + [1 + i.(1 + 3e^{i\theta})]z + (3.i - 3)e^{i\theta}$ |z|=1 : نفترض في هذا السؤال أن =1. $z \in C$ حيث θ عدد حقيقي و $\varphi(z) = Z$: نضع (1 ين أ ن $z_1 = -3.e^{i\theta}$ حل للمعادلة : أ ــ بر هن على أ ن : Z = i.z.Z الأستاذ : على الشريف تمارين درس الأعداد العقدية ص 10 دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضية نيابة الخميسات www.agamaths.wb.st $M_{_2}$ ما هي مجموعتي النقطتين $\alpha\in [-\pi,\pi]$ ب – أ ستنتج أ نه إ ذا كا نZ حقيقيا فإ نه منعدما $\theta \in \left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$ $z = \cos(\theta) + i.\sin(\theta)$: نضع (2 $\alpha = \frac{\pi}{2}$ أرسم هاتين المجموعتين بأخذك أ - تأكد من أن: $1 + \sin(\theta) = 2.\cos^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$ $\frac{1+i}{\sqrt{3}-i}$: الشكل المثلثي الشكل المثلثي (1 $\cos(\theta) = 2.\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right).\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$ $z^{8} = \frac{1+i}{\sqrt{2}}$: (2) ب - أكتب العددين1.z-1 و z+1 على الشكل المثلثي . ج - ستنتج كتابة z على الشكل المثلثي . $Z^{12} = 1 \; : C$ حل المعادلة في (1 حل المثلثي ثم أ كتب حلولها على الشكل المثلثي $f(z) = z^3 + 4.z$ $1 + u + u^2 + \dots + u^n$: عدد عقدی أحسب u (2 $Z^{8} + Z^{4} + 1 = 0$ | Land | Lan ≥ التمرين 55: $z \in C : z^4 = 1 + i\sqrt{3}$ نعتبر اللمعادلة:

1) حل المعادلة ثم أعط الشكل المثلثي لكل حل من حلولها. 2) أعط الشكل الجبري لكل جذر من الجذرين المربعين $u = i + \sqrt{3}$: Lake

$$v = \sqrt{\frac{2.\sqrt{2} + \sqrt{6}}{4}} + i.\sqrt{\frac{2.\sqrt{2} - \sqrt{6}}{4}}$$
 : نضع (3

 ${f v}^2$ عط الشكل الجبري للعدد $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} : 0$

. $\left(O; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ م.م.م $\left(A; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ المستوى P منسوب إلى م.م.م M(z) نحو P الذي يربط النقطة S من P من P من P منحويل $z = (1 + i.\sqrt{3})z - \sqrt{3}$ بالنقطة (z') M'(z') بالنقطة Γ مجموعة النقط M من Γ بحيث عدد طبيعة

 $\|\overrightarrow{OM'}\| = \sqrt{3}.\|\overrightarrow{OM}\|$

نعتبر التطبيق f في C المعرف بما يلي:

 $(y \in IR)$ و $x \in IR$ و z = x + i.yالنقطة M هي صورة z في المستوى العقدي .

أ ـ أ كتب f(z) بدلالة x و y على الشكل الجبّري .

ب- حدد المجموعة (E) للنقط M بحيث يكون f(z) عددا

ج – حدد المجموعة (F) للنقط M بحيث يكون (F) عددا

ه- آ ستعمل الصيغة الجبرية للعدد f(z) لحل المعادلة :

د - أرسم صور الحلين في المستوى العقدي و أرسم المجموعتين(E) و (F) .

$$\alpha \in IR^{*+}$$
 , $g(z) = z^2 + \alpha \cdot \frac{\overline{z}}{z}$

 $z = \sqrt{\alpha}.(\cos(\theta) + i.\sin(\theta))$: ا $g(z) = 2.\alpha.\cos(2\theta)$: بر هن على أن \mathbb{Z}

 $g\left(z\right)=0$: حدد معيار z ليكون z حلا للمعادلة g(z) = 0 : حلول المعادلة حلول المعادلة

التمرين 53 :

نعتبر التطبيق ϕ من $\{-1\}$ المعرف بما يلي نعتبر التطبيق $\varphi(z) = \frac{i \cdot z - 1}{(z + 1)^2}$

 $\varphi(z) = z$ I) حل المعادلة:

علما أن إحدى حلولهاتخيلي صرفا

|z|=1 نفترض في هذا السؤال أن : 1=1

 $\varphi(z) = Z$: نضع (1

أ ــ برهن على أن : Z = i.z.Z الأستاذ : على الشريف

تمارين درس الأعداد العقدية ص 11 www.agamaths.wb.st

دروس الدعم و التقوية قسم: الثانية باكالوريا علوم رياضية

نيابة الخميسات (E): P(z) = 0; $z \in C$

2) أ – حدد العددين العقديين a و b بحيث :

 $\forall z \in C : P(z) = (z + 3.i.e^{i\theta})(z^2 + a.z + b)$

 (E) ب - ليكن z_{2} و z_{3} الحلين الأخرين للمعادلة

حدد Z_2 و Z_3) حدد حدد حدد التخيلي الصرف (حدد

ر الشكل المثلثي ي Z_3 ; Z_2 على الشكل المثلثي Z_3

ب – نضع $\frac{\pi}{10}$ حدد الشكل الجبري للعدد العقدي θ $\alpha = z_1^5 + z_2^5 + z_3^5$: $\alpha = \alpha$

المستوى العقدي منسوب إلى م.م.م $(O; \overrightarrow{e_1}; \overrightarrow{e_2})$.

(E):
$$z^2 - 2.z + \frac{1}{\cos^2(\theta)} = 0$$
: is in its interval (E): $z^2 - 2.z + \frac{1}{\cos^2(\theta)} = 0$

$$\left[-rac{\pi}{2}\,;rac{\pi}{2}
ight[$$
 حيث $heta$ بارامتر حقيقي من المجال $heta$

1) أ – حل المعادلة (E).

ب – ليكن z_1 و z_2 حلى المعادلة (E) حيث : $Im(z_1) = tan(\theta)$

أ كتب Z_1 و Z_2 على الشكل المثلثى .

لتكن M_1 و M_2 على النوالي صورتي M_1 و M_2 في المستوى العقدي بين أن المثلث OM_1M_2 متساوي الساقين رأ سه 🕜 .

نعتبر المعادلة : $n \in IN^*$ ليكن $n \in IN$

$$(E_1):z^{2.n}-2.z^n+\frac{1}{\cos^2(\theta)}=0$$

حدد حلول المعادلة (E_1) على الشكل المثلثى .

نعتب المعادلة ·

(E):
$$z^2 + 2.\cos(\theta)(1 + \cos(\theta))z + (1 + \cos(\theta))^2 = 0$$

 $a = 2.\cos^2\left(\frac{\theta}{2}\right) \cdot \left(-\cos(\theta) + .i\sin(\theta)\right)$

 $P(Z) = z^3 + (1 + 3.ie^{i\theta})z^2 + [1 + i.(1 + 3e^{i\theta})]z + (3.i - 3)e^{i\theta}$

ن ستنتج على الشكل المثلثي بدلالة θ الجذرين المربعين (3 . \overline{a} Lace z_4 z_3

4) نضع لكل n من 1N:

 $z \in C$ عدد حقيقي و

ين أن $z_1 = -3.e^{i\theta}$ حل للمعادلة :

 $S_n = z_1^n + z_2^n + z_3^n + z_4^n$

5) بين أن لكل p من (5

$$S_{2,p} = (-1)^p . 2^{p+2} \left(\cos\left(\frac{\theta}{2}\right) \right)^{2p} . \cos(p\theta)$$

 $S_{2,p+1} = 0$

ڪ التمرين 60:

المستوى P منسوب إلى م.م.م (O;i;j). نعتبر في C المعادلة:

$$(E_{\theta}): z^2 - (1 + i\sin 2\theta)z + \frac{1}{2}i\sin 2\theta = 0$$

 $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

المعادلة (E_{θ}) و أعط الحل المزدوج.

2) لتكن' M و '' M صورتى الحلين 'z' و ''z و [

ما هي مجموعة النقط I عندما يتغير θ في $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$.

b.برهن على أن مجموعة النقطتين 'M و ''M هي دائرة

ر بر هن أنه إذا كان "M' \neq M' فإن المستقيم ("M'M") له $^{f c}$ hetaاتجاه غیر مرتبط بقیم heta . heta معلوم آستنتج مما سبق طريقة بسيطة لإنشاء I و 'M و "M.

نعتبر $C - \{a\}$ المعرف $C - \{a\}$ المعرف

 $a \in C^*$ $f_a(z) = \frac{az}{z-a}$

1) بین أن

 $\left[0; \frac{\pi}{2}\right]$ حيث θ بارامتر حقيقي من المجال

ل حل المعادلة (E) ثم أعط الشكل المثلثي لحليها بدلالة θ عدد على الشكل المثلثي بدلالة θ الجذرين المربعين (2

 Z_0 و Z_0 للعدد العقدي :

$$f_a(z)$$
 \in i $IR \Leftrightarrow \left|z\right|^2$ $R_e(a) = \left|a\right|^2$ $R_e(z)$ $\left|z-a\right| = r$ نضع $C-\left\{a\right\}$ بیکن $C-\left\{a\right\}$ مین $C-\left\{a\right\}$ و $C-\left\{a\right\}$ بدلالهٔ $C-\left\{a\right\}$ بدلالهٔ $C-\left\{a\right\}$ بدلالهٔ $C-\left\{a\right\}$ بدلالهٔ $C-\left\{a\right\}$ و $C-\left\{a\right\}$ معرف $C-\left\{a\right\}$ بدلالهٔ $C-\left\{a\right\}$ و $C-\left\{a\right\}$ معرف $C-\left\{a\right\}$ و $C-\left\{a\right\}$ معرف $C-\left\{a\right\}$ و $C-\left\{a\right\}$ معرف C

الأستاذ: على الشريف دروس الدعم و التقوية تمارين درس الأعداد العقدية ص 12 قسم: الثانية باكالوريا علوم رياضية www.agamaths.wb.st متعامداتان

a = -1 + i نضع فيما يلي a = -1 + i و نعتبر في المستوى $(O, \overrightarrow{u}, \overrightarrow{v})$ lhaime (P)المجمو عات

$$(\sigma) = \left\{ M(z) / |f_a(z) - a| = 2 \right\}$$
$$(E) = \left\{ M(z) / f_a(z) \in i \text{ IR} \right\}$$

(D) =
$$\{M(z)/\arg(f_a(z)-a) \equiv \frac{3\pi}{4}[2\pi]\}$$

و بین أن (D) و این أن (E) نصف (E)مستقيم طرفه A(a) محروم من النقطة A(a) محددا معادلة ديكارتية له.

ب-ليكن $z_{ heta}$ من $C-\{a\}$ و النقطة B ذات اللحق $(D) \cap (\sigma)$ لتتمي إلى B بحيث ويعبد z_{θ}

. $z_{ heta}$ على الشكل الجبري ثم اشتنتج المتت $f_a(z_{ heta})$ ج-أنشىء (σ) و (E) و (D) في المعلم (σ) .

🛂 🗷 التمرين 62 :

I) نعتبر المعادلة(E) التالية:

 $(1+iz)^3(1-i\tan\alpha) = (1-iz)^3(1+i\tan\alpha)$

 $\left[-rac{\pi}{2},rac{\pi}{2}
ight]$ و lpha عدد حقيقي من المجال $z\in C$

(E) ليكن z حلا للمعادلة (E).

أثبت أن $|1+iz_0|=|1-iz_0|$ و أستنتج أن عدد

 $\frac{1+i \tan \alpha}{1-i \tan \alpha}$ أ-أ عط الشكل المثلثي للعدد العقدي:

حقيقي من المجال $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$

يبين أن المعادلة(E) تكافئ معادلة (E') ذات المجهول (E') ذات المجهول على الشكل المثلثي. 🛂 ثم حل المعادلة (' E).

ج- حل المعادلة (E)

 $\mathbf{u} = \mathbf{1} + \mathbf{i} \mathbf{k}$ یکن \mathbf{u} عددین عقدیین بحیث \mathbf{u} عددین (2 $((k, k') \in IR^2)$ u' = 1 + i k'أ-أعط طريقة هندسية لإ نشاء ''M انطلاقا من النقطين $k \neq k'$ المعلومتين K(u) و K'(u') في الحالة ب-حدد (Γ) مجموعة النقط''M في الحالة التي يكون فيها k و k متساويين ويتغيران في k أنشىء Γ).

<u> 163 التمرين</u>

 $C-\left\{i\right\}$ نعتبر النقطتين A'(-i) و A'(-i) و نعتبر النقطتين من $f(z) = \frac{z(z-i)}{z-1}$ نحو C و المعرف كما يلي: M(z) نحو P يربط كل نقطة $P - \{A\}$ نحو F تطبيق من z'=f(z) : حيث M'(z') بالنقطة

|z'| = |z| : أثبت أن - (a(1

 $z \neq 0$ اذا کان $z \neq 0$ اندا کان $z \neq 0$ اندا کان $z \neq 0$ اندا کان

(نلاحظ أن z-i و z+1 متر افقان). f(z) = -i فإن إذاكان |z| = 1 فإن أن إذاكان (b

a(2) حدد مجموعة النقط الصامدة بالتطبيق

 $f(z) \in iIR$ ماهى مجموعة النقط M(z) حيث تكون M(z) عا

. $z'-z = \frac{-i(z+\overline{z})}{|\overline{z}+i|^2}(z-i)$ و $z'+i = \frac{z\overline{z}-1}{|\overline{z}+i|^2}(z-i)$ بي (3)

 $\overrightarrow{A'M'}$ و \overrightarrow{AM} . \overrightarrow{AM} .

التمرين 64 : كولان العدد العقدي بحيث ليكن u عددا عقديا غير منعدم و j العدد العقدي بحيث

 $j = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$ $z_2 = ui$ و $u = [r, \theta]$ نضع

> $Z = \frac{z_1 + z_2}{z_1 + z_2}$ 2) نضع

 $(O,\overline{e_1},\overline{e_2})$ المستوى العقدي P منسوب إلى م.م م $(O,\overline{e_1},\overline{e_2})$.

ا نعتبر التحويل S_{II} من P نحو P الذي يربط كل نقطة (1

 $z'=u\ z$: بالنقطة M(z') بالنقطة المناب M(z)

الجزء : $R_e(u)$ ($R_e(u) = 1$ الجزء uالحقيقي للعدد u .

 \overrightarrow{MM} و بین أن المتجهتین \overrightarrow{OM} و وبین أن المتجهتین

$$\left(\cos\frac{5\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}\right) \quad \text{if } \bar{j}-i$$

 θ و r بدلالة r و rاً- حدد قيم θ التي يكون من أجلها Z عددا حقيقيا θ

n عدد صحيح طبيعي أكبر قطعا من1. 1) حدد على الشكل المثلثي الجذور النونية لكل من:

(1): $z^{2n} - z^n + 1 = 0$: المعادلة (2) حل في C

من k لكل $k2\pi$ من عددا حقيقيا يخالف θ من

 $\frac{\cos\theta+i\sin\theta+1}{\cos\theta+i\sin\theta-1}=-i\cot anrac{\theta}{2}$: بين أن : Z

 $(2): \left(\frac{z-1}{z+1}\right)^n + \left(\frac{z+1}{z-1}\right) = 1$ ب- حل في المعادلة

ج- نعتبر في المستوى العقدي (P) النقطة A ذات

اللحق1. بين أن مجموعة صور حلول المعادلة (2)، في (P) هي تقاطع المستقيمات (AM) مع محور الأراتيب

حيث M تنتمي إلى مجموعة صور الجذور النونية للعددين

 $v = \frac{1 - i\sqrt{3}i}{2}$ $u = \frac{1 + i\sqrt{3}}{2}$

- حدد قيم θ التي من أجلها Z تخليا صرفا. د العقدية ص 13 دروس الدعم و التقوية تمارين درس الأعداد العقدية ص 13 قسم: الثانية باكالوريا علوم رياضية www.agamaths.wb.st

ھ التمرين 67

الأستاذ: على الشريف نيابة الخميسات

ب- حدد قيم θ التي من أجلها Z تخليا صرفا.

(E) نعتبر المعادلة (E) التالية

(E) $z \in C : z^3 - ujz^2 + u^2z - u^3j = 0$ أ- بين أن العدد iu - على المعادلة (E) .

ب- حل المعادلة (E)

ج- بين أن صور حلول المعادلة (E) تنتمي إلى دائرة يجب تحدید مرکز ها و شعاعها

نعتبر المستوى منسوبا إلى م.م.م.م.

$$f(Z) = \frac{\overline{Z} + i}{Z}$$
: نحو C بحیث C*انتطبیق من

|f(Z)| = 1 : حدد مجموعة النقط التي لحقها z حدد مجموعة النقط التي العقال z

$$f\left(\frac{1}{Z}\right) = Z\overline{Z}$$
 : المعادلة C على في

$$\theta \in \left[0, \frac{\pi}{2}\right]$$
 : حیث $Z = \cos \theta + i \sin \theta$ نضع (3)

أ- مثل النقط N,M, B, التي ألحاقها: Z, Z, i على

 \overline{Z} + i النقطة التي لحقها P .

تحقق من أن الرباعي ONPB معين .

و آستنتج عمدة $\overline{Z}+i$ ثم عمدة f(z) بدلالة θ .

f(z) بدلالة θ

ڪ التمرين 68 :

u و v في المستوىP .

لتكن U مجموعة الأعداد العقدية التي معيارها1. 1) بین أنه لكل z من U :

 $-1 \le \operatorname{Im}(z) \le 1$ $e(z) \le 1$ 2) ليكن a و b عددبن عقديين من (2

 $\frac{(a+b)^2}{ab} = a \, \overline{b} + \overline{a.b} + 2$: أ- بين أن

ب-أستنتج أن : $\frac{(a+b)^2}{ab}$ عدد حقيقي موجب .

يكن z_1 و z_2 عقديين غير منعدمين. نعتبر في المستوى z_1 العقدي المنسوب إلى م.م.م.م،النقطتين $m M_{
m 0}$ و $m M_{
m 0}$ اللتين

لحقهما على التوالي هما z_1 و z_2 . و ليكن t لحق النقطة G مرجح النظمة المتزنة

$$b = \frac{z_2}{|z_2|}$$
 و ليكن $a = \frac{z_1}{|z_1|}$ نضع $a = \frac{z_1}{|z_1|}$ نضع $a = \frac{z_1}{|z_1|}$ نضع $a = \frac{z_1}{|z_2|}$ و ليكن $a = \frac{z_1}{|z_2|}$ و ليكن $a = \frac{z_1}{|z_2|}$

ھالتمرين66:

المعادلة $\overline{X^2-X+1}=0$ ثم أكتب المغادلة م المثلثي.

$$\begin{cases} x^3 + y^3 = 1 \\ x.y = 1 \end{cases}$$
: C^2 في النظمة في $-b$

. Im $y^3 \le 0$ بحيث

€و y عددي عقديين بحيث xy=1.

(E)جدر للمعادلة x+y جدر المعادلة عبين أن

 $.\frac{\mathsf{t}^2}{\mathsf{z}_1.\mathsf{z}_2} = \frac{(\mathsf{a}+\mathsf{b})^2}{\mathsf{a}\mathsf{b}} \times \frac{|\mathsf{z}_1| \times |\mathsf{z}_2|}{\left(|\mathsf{z}_1| + |\mathsf{z}_2|\right)^2}$ ب- نفتر ض أن: $0 \neq 0$ هو حامل منصف $0 \in \mathbb{C}$ بين أن $0 \in \mathbb{C}$ هو حامل منصف $0 \in \mathbb{C}$ اللتين لحقاهما على التوالي هما $0 \in \mathbb{C}$ و $0 \in \mathbb{C}$ التوالي هما $0 \in \mathbb{C}$ و $0 \in \mathbb{C}$ الزاوية $0 \in \mathbb{C}$. $0 \in \mathbb{C}$. $0 \in \mathbb{C}$.

(E) . (E)