Université Mohamed Premier Filiere SMI - Semestre 5
Faculté des Sciences Module : Compliation
Oujda Année universitaire 2016 — 2017

Solutions des TP N° 1

Exercice 1

1. Un reconnaisseur en C' pour le langage des chailnes qui commencent par 0
et se terminent par 11 :

> Tout d’abord, il faut vérifier que le premier caractere lu est un '0’, sinon
on retournera la valeur 0.

> Ensuite, pour les autres caracteres, il faut vérifier que chacun d’eux est
dans I'ensemble {0, 1, \n}.

> Il faut chercher une séquence de la forme ’1°, '1’ "\n’.

» Algorithme :

Fonction Analex() : Booléen;
Variables :
car : Caracteére;
indicateur : Booléen;
Début
indicateur := Faux;
lire(car);
Si(car !'= ’0°)
Alors Retourner Faux;
FinSi
Répéter
lire(car);
Si(car = ’0°)
Alors indicateur = Faux;
Sinon Si(car = ’17)
lire(car);
Si(car = ’0’)
Alors indicateur = Faux;

Sinon Si(car = ’17)
Alors indicateur = Vrai;
FinSi

FinSi
FinSi
Jusqu’a (car = ’\n’ ou (car != ’0’ et car != ’17));
Si(car '= ’\n’)
Alors Retourner Faux;
Sinon
Retourner indicateur;
FinSi
Fin
» Programme C :

#include <stdio.h>
int AnaLex()
{

char car;

int indicateur = 0;

car = getchar(Q);
if(car '= ’07%)
return O;
do
{
car = getchar();
if(car == ’07)
indicateur = 0;
else
{
if(car == ’17)
{
car = getchar();
if(car == ’07)
indicateur = 0;
else
{
if(car == ’17)

indicateur = 1;

+
}while(car '= ’\n’ && (car == ’0’ || car == ’1’));
if(car '= ’\n’)
return O;
else

return indicateur;

}
int main()
{
if (AnalLex())
printf ("Chaine acceptee\n");
else
printf ("Chaine non acceptee\n");
system("pause") ;
return O;
}

2. Un reconnaisseur en C' pour le langage des chaines ayant un nombre pair de 0 :

» Algorithme :

Fonction Analex() : Booléen;
Variables
car : Caracteére;
pair : Booléen;
Début
pair := Vrai;
Répéter
lire(car);
Si(car = ’0’)
Alors pair = Non pair;
FinSi
Jusqu’a (car = ’\n’ ou (car != ’0’ et car != ’17));
Si(car '= ’\n’)
Alors Retourner Faux;
Sinon
Retourner pair;
FinSi
Fin
» Programme :

#include <stdio.h>

int AnaLex()
{
char car;
int pair = 1;

do

{

car = getchar();

if(car == ’0’)

pair = ! pair;

}while(car != ’\n’ && (car == ’0’ || car == ’1’));
if(car '= ’\n’)

return O;
else

return pair;

}

3. Un reconnaisseur en C' pour le langage des chaines ayant exactement un seul 1 :

» Algorithme :

Fonction Analex() : Booléen;
Variables
car : Caracteére;
nb_un : Entier;
Début
nb_un := 0;
Répéter
lire(car);
Si(car = ’1°)
Alors nb_un := nb_un + 1;
FinSi
Jusqu’a (car = ’\n’ ou (car != ’0’ et car != ’17));
Si(car '= ’\n’)
Alors Retourner Faux;
Sinon
Retourner (nb_un = 1);
FinSi
Fin
» Programme :

#include <stdio.h>

int AnaLex()
{
char car;
int nb_un = O;

do

{

car = getchar();

if(car == ’17)
nb_un++;

}while(car != ’\n’ && (car == ’0’ || car == ’1’));
if(car '= ’\n’)

return O;
else

return (nb_un == 1);

}

4. Un reconnaisseur en C' pour le langage des chaines w pour lesquelles le nombre
2|w|o + |w|; est divisible par 3 :

» Algorithme :

Fonction AnalLex() : Booléen;
Variables
car : Caractére;
nb_zero, nb_un : Entier;
Début
nb_zero := 0;
nb_un := 0;
Répéter
lire(car);
Si(car = ’1°)
Alors nb_un := nb_un + 1;
Sinon Si(car = ’0’)
Alors nb_zero := nb_zero + 1;
FinSi
FinSi
Jusqu’a (car = ’\n’ ou (car != ’0’ et car != ’1’));
Si(car !'= ’\n’)
Alors Retourner Faux;
Sinon
Retourner ((nb_un + 2 * nb_zero) mod 3 = 0);
FinSi
Fin
» Programme :

#include <stdio.h>

int Analex()

{

char car;
int n0 = 0; /* nombre des 0 */
int nl = 0; /* nombre des 1 %/
do
{

car = getchar();

if(car == ’0’)

n0++;
else
{
if(car == ’17)
nl++;

+
}while(car != ’\n’ && (car == ’0’ || car == ’1’));
if(car '= ’\n’)

return O;
else
return ((2 * n0 + n1) % 3 == 0);
}

Remarque : la fonction "main” est la méme pour tous les programmes !

Exercice 2

Il suffit de traduire en C' l'algorithme de reconnaissance d’un mot par un AFD
complet vu en cours. Il faut tout d’abord fixer une notation pour reptésenter les
éléments d’'un AFD. Voici une notation simple :

D> L’ensemble des états E : s’il y a N états, on les note de 0 a N — 1.

o> L’alphabet A : un tableau A indexé de 0 a K — 1, ou K est la taille de
I’alphabet.

> L’état initial gy : I’état 0.
>> La fonction de transition § : une matirice M[i,j] = d(i, j), ou i =

0,1,...,N — 1 désigne un état et 7 = 0,1,..., K — 1 désigne un symbole
de I'entrée.

> L’ensemble des états finaux F': un tableau d’entiers I indexé de 0 a Ny —1
ou Ny est le nombre des états finaux.

On utilisera une fonction qui renvoie l'indice d’un symbole (dans le tableau qui
représente l'alphabet). En fait, la notation du cours d(etat, symbole) sera tra-
duite par M[i, j] ou i = etat et j = indice(symbole).

La fonction "est_final(etat €)” permet de tester si un état e est final ou non.
La fonction ”accpter()” simule la reconnaissance d'un mot par un AFD. On
supposera que les mots tapés seront des mots sur I'alphabet A spécifié. Voici le
squelette général du programme :

#include <stdio.h>

#define N
#tdefine K
#tdefine NF ...

char A[K] = {...}; /* alphabet */
int MINI[KI = {{...}, ..., {...}};
int F[NF] = {...};

int est_final(int etat)

{
int i;
for(i = 0; i < NF; i++)
if (F[i] == etat)
return 1;
return O;
}
int indice(char symbole)
{
int i;
for(i = 0; i < K; i++)
if (A[i] == symbole)
return i;
}

int accepter()

{

int car;
int etat;

etat = 0; /* On part de 1’état initial */
do
{

car = getchar();

if(car '= ’\n’)

{

etat = M[etat] [indice(car)];

+
}while(car !'= ’\n’);
return est_final(etat);

int main()
{
printf ("Votre mot : ");
if (accepter())
printf ("Accepte\n");
else
printf ("Non accepte\n");
system("pause") ;
return O ;

}

Ce programme est général pour n’importe quel automate : il faut tout simplment
changer les données sur I’AFD considéré (remplir les trois points ...).
Voici maintenant les quatre AFD demandés :

Fic. 1 — Un AFD complet de la question 1, Exercice 1.

_. (1) 1

Fic. 2 — Un AFD complet de la question 2, Exercice 1.

4@ 1 £®}1 @

Fic. 3 — Un AFD complet de la question 3, Exercice 1.

FiG. 4 — Un AFD complet de la question 4, Exercice 1.

