
Université Mohamed Premier Filière SMI - Semestre 5
Faculté des Sciences Module : Compliation
Oujda Année universitaire 2016 − 2017

Solutions des TP N◦ 1

Exercice 1

1. Un reconnaisseur en C pour le langage des châınes qui commençent par 0
et se terminent par 11 :

. Tout d’abord, il faut vérifier que le premier caractère lu est un ’0’, sinon
on retournera la valeur 0.

. Ensuite, pour les autres caractères, il faut vérifier que chacun d’eux est
dans l’ensemble {0, 1, \n}.

. Il faut chercher une séquence de la forme ’1’, ’1’ ’\n’.

I Algorithme :

Fonction AnaLex() : Booléen;

Variables :

car : Caractère;

indicateur : Booléen;

Début

indicateur := Faux;

lire(car);

Si(car != ’0’)

Alors Retourner Faux;

FinSi

Répéter

lire(car);

Si(car = ’0’)

Alors indicateur = Faux;

Sinon Si(car = ’1’)

lire(car);

Si(car = ’0’)

Alors indicateur = Faux;

Sinon Si(car = ’1’)

Alors indicateur = Vrai;

FinSi

1

FinSi

FinSi

Jusqu’à (car = ’\n’ ou (car != ’0’ et car != ’1’));

Si(car != ’\n’)

Alors Retourner Faux;

Sinon

Retourner indicateur;

FinSi

Fin

I Programme C :

#include <stdio.h>

int AnaLex()

{

char car;

int indicateur = 0;

car = getchar();

if(car != ’0’)

return 0;

do

{

car = getchar();

if(car == ’0’)

indicateur = 0;

else

{

if(car == ’1’)

{

car = getchar();

if(car == ’0’)

indicateur = 0;

else

{

if(car == ’1’)

indicateur = 1;

}

}

}

}while(car != ’\n’ && (car == ’0’ || car == ’1’));

if(car != ’\n’)

return 0;

else

2

return indicateur;

}

int main()

{

if(AnaLex())

printf("Chaine acceptee\n");

else

printf("Chaine non acceptee\n");

system("pause");

return 0;

}

2. Un reconnaisseur en C pour le langage des châınes ayant un nombre pair de 0 :

I Algorithme :

Fonction AnaLex() : Booléen;

Variables :

car : Caractère;

pair : Booléen;

Début

pair := Vrai;

Répéter

lire(car);

Si(car = ’0’)

Alors pair = Non pair;

FinSi

Jusqu’à (car = ’\n’ ou (car != ’0’ et car != ’1’));

Si(car != ’\n’)

Alors Retourner Faux;

Sinon

Retourner pair;

FinSi

Fin

I Programme :

#include <stdio.h>

int AnaLex()

{

char car;

int pair = 1;

3

do

{

car = getchar();

if(car == ’0’)

pair = ! pair;

}while(car != ’\n’ && (car == ’0’ || car == ’1’));

if(car != ’\n’)

return 0;

else

return pair;

}

3. Un reconnaisseur en C pour le langage des châınes ayant exactement un seul 1 :

I Algorithme :

Fonction AnaLex() : Booléen;

Variables :

car : Caractère;

nb_un : Entier;

Début

nb_un := 0;

Répéter

lire(car);

Si(car = ’1’)

Alors nb_un := nb_un + 1;

FinSi

Jusqu’à (car = ’\n’ ou (car != ’0’ et car != ’1’));

Si(car != ’\n’)

Alors Retourner Faux;

Sinon

Retourner (nb_un = 1);

FinSi

Fin

I Programme :

#include <stdio.h>

int AnaLex()

{

char car;

int nb_un = 0;

4

do

{

car = getchar();

if(car == ’1’)

nb_un++;

}while(car != ’\n’ && (car == ’0’ || car == ’1’));

if(car != ’\n’)

return 0;

else

return (nb_un == 1);

}

4. Un reconnaisseur en C pour le langage des châınes w pour lesquelles le nombre
2|w|0 + |w|1 est divisible par 3 :

I Algorithme :

Fonction AnaLex() : Booléen;

Variables :

car : Caractère;

nb_zero, nb_un : Entier;

Début

nb_zero := 0;

nb_un := 0;

Répéter

lire(car);

Si(car = ’1’)

Alors nb_un := nb_un + 1;

Sinon Si(car = ’0’)

Alors nb_zero := nb_zero + 1;

FinSi

FinSi

Jusqu’à (car = ’\n’ ou (car != ’0’ et car != ’1’));

Si(car != ’\n’)

Alors Retourner Faux;

Sinon

Retourner ((nb_un + 2 * nb_zero) mod 3 = 0);

FinSi

Fin

I Programme :

#include <stdio.h>

5

int AnaLex()

{

char car;

int n0 = 0; /* nombre des 0 */

int n1 = 0; /* nombre des 1 */

do

{

car = getchar();

if(car == ’0’)

n0++;

else

{

if(car == ’1’)

n1++;

}

}while(car != ’\n’ && (car == ’0’ || car == ’1’));

if(car != ’\n’)

return 0;

else

return ((2 * n0 + n1) % 3 == 0);

}

Remarque : la fonction ”main” est la même pour tous les programmes !

Exercice 2

Il suffit de traduire en C l’algorithme de reconnaissance d’un mot par un AFD
complet vu en cours. Il faut tout d’abord fixer une notation pour reptésenter les
éléments d’un AFD. Voici une notation simple :

B L’ensemble des états E : s’il y a N états, on les note de 0 à N − 1.

B L’alphabet A : un tableau A indexé de 0 à K − 1, où K est la taille de
l’alphabet.

B L’état initial q0 : l’état 0.

B La fonction de transition δ : une matirice M [i, j] = δ(i, j), où i =
0, 1, ..., N − 1 désigne un état et j = 0, 1, ..., K − 1 désigne un symbole
de l’entrée.

6

B L’ensemble des états finaux F : un tableau d’entiers F indexé de 0 à Nf −1
où Nf est le nombre des états finaux.

On utilisera une fonction qui renvoie l’indice d’un symbole (dans le tableau qui
représente l’alphabet). En fait, la notation du cours δ(etat, symbole) sera tra-
duite par M [i, j] où i = etat et j = indice(symbole).

La fonction ”est final(etat e)” permet de tester si un état e est final ou non.
La fonction ”accpter()” simule la reconnaissance d’un mot par un AFD. On
supposera que les mots tapés seront des mots sur l’alphabet A spécifié. Voici le
squelette général du programme :

#include <stdio.h>

#define N ...

#define K ...

#define NF ...

char A[K] = {...}; /* alphabet */

int M[N][K] = {{...}, ..., {...}};

int F[NF] = {...};

int est_final(int etat)

{

int i;

for(i = 0; i < NF; i++)

if(F[i] == etat)

return 1;

return 0;

}

int indice(char symbole)

{

int i;

for(i = 0; i < K; i++)

if(A[i] == symbole)

return i;

}

int accepter()

{

7

int car;

int etat;

etat = 0; /* On part de l’état initial */

do

{

car = getchar();

if(car != ’\n’)

{

etat = M[etat][indice(car)];

}

}while(car != ’\n’);

return est_final(etat);

}

int main()

{

printf("Votre mot : ");

if(accepter())

printf("Accepte\n");

else

printf("Non accepte\n");

system("pause");

return 0 ;

}

Ce programme est général pour n’importe quel automate : il faut tout simplment
changer les données sur l’AFD considéré (remplir les trois points ...).
Voici maintenant les quatre AFD demandés :

Fig. 1 – Un AFD complet de la question 1, Exercice 1.

8

Fig. 2 – Un AFD complet de la question 2, Exercice 1.

Fig. 3 – Un AFD complet de la question 3, Exercice 1.

Fig. 4 – Un AFD complet de la question 4, Exercice 1.

9

