1 EXERCICE: Dimensionnement d'un moteur asynchrone

La plaque signalétique d'un moteur asynchrone triphasé est la suivante :

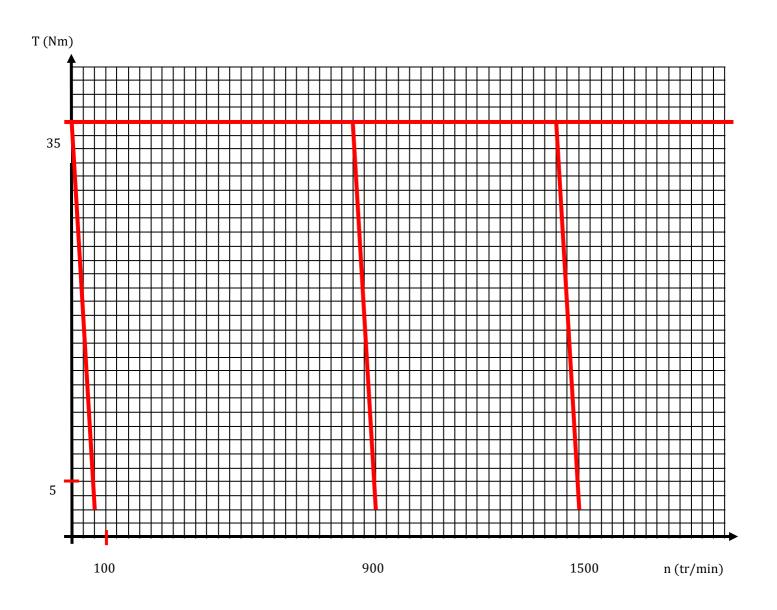
220 V / 380 V 50 Hz

17 A / 9.8 A $n_n = 1440 \text{ tr/min}$

Les pertes autres que celles par effet joule dans le rotor sont négligées dans tout le sujet.

1.1 Etude du moteur alimenté par un réseau 220 V / 380 V, 50 Hz :

- Q1. Calculer la vitesse de synchronisme n_s en tr/min.
- Q2. Donner le nombre de paires de pôles.
- Q3. Indiquer le couplage, justifier votre réponse.
- Q4. Donner l'intensité efficace du courant nominal en ligne.
- 05. Donner l'intensité efficace du courant nominal dans un enroulement.
- Q6. Calculer le glissement pour le fonctionnement nominal.
- Q7. Calculer le moment du couple nominal T_n.


1.2 Etude du moteur alimenté à fréquence f réglable avec le rapport U / f constant :

 $U\ d{\acute{e}signe}\ la\ tension\ d'alimentation\ du\ moteur.\ Les\ fr{\acute{e}quences}\ de\ rotation\ n_s\ et\ n,\ sont\ exprim{\'e}es\ en\ tr\ /\ min.$

- Q1. Exprimer la différence de rotation $\Delta n = n_s n$, en fonction de g, f et p le nombre de paires de pôles.
- Q2. En régime permanent, pour un couple de moment fixé, on montre que le produit g.f reste constant quand la fréquence f varie. Monter que dans ce cas Δn reste constant quand f varie.
- Q3. Calculer la valeur de Δn pour le couple nominal, vous prendrez $T_n = 35$ Nm.
- Q4. Compléter le tableau ci-dessous, en donnant les valeurs de la fréquence de rotation en tours par minute pour les fréquences 10 Hz et 30 Hz.

Fréquence f en Hz	10	30	50
A vide: n _s en tr / min			1500
AT _n : nentr/min			1440

Q5. Déterminer la fréquence minimale permettant d'obtenir au démarrage un couple égal au couple nominal.

