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 Programmes Vibrations 

 

Chapitre 1: Généralités sur les vibrations. Systèmes linéaires à un degré de liberté 

Définition d’un mouvement vibratoire. Exemples de systèmes vibratoires. Mouvements périodiques. 

Les oscillations libres. L’oscillateur harmonique. Pulsation propre d’un oscillateur harmonique. L’énergie 
d’un oscillateur harmonique 

Chapitre 2 : Les oscillations libres amorties 

Forces d’amortissement. Équation des mouvements. Oscillations pseudo périodiques (décrément 
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Chapitre 3 : Les oscillations amorties forcées 

Définition. Cas d’une excitation sinusoïdale (résonance, déphasage). Cas d’une excitation périodique 
quelconque. 

Équation des mouvements. Régime transitoire, régime permanent. Bande passante. Facteur de qualité 

Chapitre 4 : Systèmes linéaires à plusieurs degrés de liberté  

Systèmes à 2 degrés de liberté. Libres (pulsations propres) 
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Introduction générale 

 

Les phénomènes vibratoires jouent un rôle déterminant dans presque toutes les 
branches de la physique: mécanique, électricité, optique, acoustique, etc. Malgré 
leur grande diversité, ils sont régis, en tout cas dans le domaine linéaire, par les 
mêmes lois de comportement et peuvent être étudiés au moyen du même outil 
mathématique. L'homme s'est intéressé aux phénomènes vibratoires lorsqu'il a 
construit les instruments de musiques. 

Malgré les connaissances acquises par les anciens, il faut attendre le début du 
17e siècle pour que Galilée (1564-1642) démontre que le ton d'un son est 
déterminé par la fréquence des vibrations. 

Très longtemps, on a étudié les vibrations des machines et des structures presque 
uniquement dans le but de les atténuer et, si possible, de les supprimer. Cette 
préoccupation est encore essentielle mais n’est pas la seule. On construit 
actuellement de plus en plus de machines ou d’appareils qui utilisent les 
vibrations mécaniques pour remplir la fonction désirée. Les vibrations sont 
parfois perturbatrices et doivent être combattues dans plusieurs domaines par 
exemple : 

- Les machines ou certains organes de machine sont une cause 
d’imprécision, de bruit, d’usure prématurée et de fissure, entrainant 
finalement la rupture de la pièce. 

- Les vibrations des voitures, des avions, des trains ou des bateaux 
provoquent, en plus des inconvénients précédents, l’inconfort des 
voyageurs et diminuent parfois la sécurité de conduite de ces véhicules. 

- Les vibrations des grandes structures métalliques peuvent prendre, dans 
certains cas, des proportions catastrophiques. 

 

Dans ces chapitres, nous allons étudier le comportement des systèmes avec un ou 
plusieurs degrés de liberté. Nous allons nous limiter à des systèmes où les 
équations de mouvement sont des équations différentielles linéaires. Ce qui nous 
permet de décrire de diverses caractéristiques importantes de vibrations. Vous 
apprendrez à analyser les vibrations libres et forcées avec ou sans 
amortissement. 
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CHAPITRE I 
Oscillations libres non amorties : Système à un degré de liberté 

I.1 Généralités sur les vibrations 
    I.1.1 Mouvement périodique :  
Définition : C’est un mouvement qui se répète à intervalles de temps réguliers, cet intervalle est appelé  
période (T) qui s’exprime en seconde (s).    
Pour les mouvements rapides, on utilise la fréquence : 𝒇 exprimée en Hertz (HZ)  
 
I.1.2 Mouvement vibratoire : 
Définition : Un mouvement vibratoire est un mouvement périodique se produisant de part est 
d’autre d’une position d’équilibre. On peut aussi définir un mouvement vibratoire par sa 
fréquence 𝒇. La fréquence indique le nombre d’oscillations complètes (dans le sens aller retour) 
se produisant par seconde. 
 On peut établir la relation entre la fréquence et la période : 

    𝑻 =  𝟏
𝒇

   𝒆𝒕    𝒇 = 𝟏
𝑻
     

La période T des oscillations est le temps mis par le système pour revenir à une 
position identique quelque soit le choix de cette position. C’est aussi, le temps mis 
pour faire une oscillation complète ou un « aller-retour ». 
Mathématiquement, le mouvement périodique de période T est défini par:   
 
                                             𝑨 𝒕𝒐𝒖𝒕 𝒊𝒏𝒔𝒕𝒂𝒏𝒕 𝒕,          𝒙(𝒕 + 𝑻) = 𝒙(𝒕) 
 
I.1.3 Mouvement vibratoire libre 
Définition : les vibrations libres sont les vibrations qui résultent lorsqu’on écarte un système de sa position 
d’équilibre ou on lui donne une vitesse initiale, puis on le laisse vibrer librement. 
Exemples : Une masse accrochée à un ressort -  un  pendule simple - le balancier d’une horloge - la rotation 
d’un moteur tournant à vitesse constante….. etc. 
 
I.1.4 Mouvement vibratoire sinusoïdal 
Définition : un mouvement vibratoire est sinusoïdal, si un point vibrant possède une élongation du type :            

𝒚(𝒕) = 𝑨 𝒔𝒊𝒏 (𝝎𝒕 + 𝝋) 
 La grandeur  𝑦(𝑡) est appelée l’élongation (ou la position) 

 à l’instant t, l’élongation maximale ou l’amplitude du 
             mouvement, elle varie entre  –A et +A.  
 La quantité 𝝎 est la pulsation du mouvement et exprimée 

en (𝑟𝑎𝑑 𝑠�   ).  
 La quantité (𝝎𝒕 + 𝝋) est la phase instantanée, exprimée en 

 (radian, sans dimension),  
  l’angle 𝜑 est la phase initiale, correspond  à la phase à l’instant 𝑡 = 0.  

I.2 Vibration harmonique  
Définition : On appelle vibration harmonique tout système dont le paramètre 𝑥(𝑡) qui la caractérise est une 
fonction sinusoïdale du temps : 𝒙(𝒕) = 𝑨 𝒄𝒐𝒔 (𝝎𝒕 + 𝝋) 
 
 

 

x(t) 

T 

t(s) 

A 

-A 
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 La fonction cosinus est une fonction périodique de période 2𝜋. Si T est la période temporelle du 
mouvement, on aura donc :  

[𝜔(𝑡 + 𝑇) + 𝜑] − [𝜔𝑡 + 𝜑] = 2𝜋 ⟹𝝎𝑻 = 𝟐𝝅 
 

On en déduit l’expression de T en fonction de la pulsation : 𝑻 = 𝟐𝝅
𝝎

  

 La fréquence f, nombre d’oscillations par seconde correspond à  l’inverse de la période T : f = 1/T.  
Il existe d’autres expressions équivalentes pour la fonction  x(t). En effet, la fonction sinus est équivalente à 
la fonction cosinus décalée de π/2. On peut donc écrire : 

𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑) = 𝐴 sin(𝜔𝑡 + 𝜑́) avec 𝝋́ = 𝝋 + 𝝅
𝟐
 

Donc : 
Les grandeurs caractéristiques d’une vibration harmonique sont :     

- L’amplitude A, 
- La période T, 𝜔 = 2𝜋

𝑇
= 2𝜋𝑓 ;𝜔: 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 ,𝑓: 𝑓𝑟é𝑞𝑢𝑒𝑛𝑐𝑒.   

- La phase 𝜑. 
 
I.2.1 Coordonnées généralisées d’un système physique 
Définition : Les coordonnées Généralisées sont l’ensemble de variables  réelles indépendantes ou liées 
permettant de décrire et configurer tous les éléments du système à tout instant t.   
Par exemples :  
 un point matériel libre dans l’espace peut être déterminé par 3 coordonnées généralisées (x, y, z); 
 un corps solide peut être déterminé par 6 coord. génér. : 

• 03 coordonnées relatives au centre de gravité; 
• 03 coordonnées liées aux angles d’Euler (𝜑,𝜓, 𝜃). 

 Les coordonnées généralisées  d’un système de  𝑃 points 
matériels et 𝑄 corps solides sont défini par : 𝑁 = 3𝑃 + 6𝑄  coordonnées. 
 

On note :   

Les coordonnées généralisées : 𝑞1(𝑡), 𝑞2(𝑡), … … … . 𝑞𝑁(𝑡). 

            Les vitesses généralisées :        𝑞̇1(𝑡), 𝑞̇2(𝑡), … … … . 𝑞𝑁̇(𝑡). 

 
I.2.2 Degré de liberté 
Définition : Le degré de liberté est le nombre de coordonnées généralisées indépendantes, nécessaires pour 
configurer tous les éléments du système à tout instant :    𝑑 =  𝑁     
Où, le nombre de coordonnées généralisées liées, pour configurer tous les éléments du système à tout instant 
moins (-) le nombre de relations reliant ces coordonnées entre elles :   𝑑 =  𝑁 − 𝑟    
𝒅:   Degré de liberté ; 
𝑵 : Nombre  de coordonnées généralisées 
𝒓 : Nombre de relations reliant ces coordonnées entre elles. 
Exemples :  
 
 Un disque de masse m  et de rayon r,  roule sans glisser sur un plan horizontal. 

Ici on a deux coordonnées généralisées 𝑥 et 𝜃 donc 𝑵 = 𝟐 . 
𝑥 et 𝜃  sont liées avec une relation: 𝑥 = 𝑟𝜃 donc : 𝒓 = 𝟏 . 
Le nombre de degrés de liberté  𝒅 = 𝑵− 𝒓 = 𝟏. 
 
 
 

 

𝜃 

 

𝑥 

Pc
Zone de texte 
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 Un système mécanique constitué de 02 points matériels 𝑀1 et 𝑀2 reliés d’une tige de longueur l. 
𝑀1(𝑥1,𝑦1, 𝑧1) : 3 
𝑀2(𝑥2,𝑦2, 𝑧2) : 3 
 
L’équation de liaison : 𝑙 = � (𝑥1 − 𝑥2 ) 2 + (𝑦1 − 𝑦2 )2 +  (𝑧1 − 𝑧2 )2  = cte 
 

⟹ 𝒓 = 𝟏 ⟹ 𝒅 = 𝟓 

I.3 Equation différentielle du mouvement 
 
Dans ce cours, on  établi l’équation différentielle  en utilisant le formalisme de Lagrange. L’intégration de  
cette dernière permet de donner l’équation du mouvement. 
 
I.3.1 Formalisme de Lagrange 
 
Ce formalisme repose sur la fonction de Lagrange(𝐿 = 𝑇 − 𝑈). L’ensemble d’équations du mouvement 
s’écrit : 

 ∑ �d
dt
�∂𝐿
∂𝑞̇𝑖
� − �∂𝐿

∂𝑞𝑖
��𝑛

𝑖=1 = 0 

• L : Fonction de Lagrange ou Lagrangien 
• T : L’énergie cinétique du système; 
• U : L’énergie potentielle du système ; 
• 𝑞𝑖 : est la coordonnée généralisée et 𝑞̇𝑖 est la vitesse généralisée du système. 

Pour un système à un degré de liberté,  (N= 1 ou ddl=1) l’équation du mouvement s’écrit : 

d
dt
�
∂𝐿
∂𝑞̇
� − �

∂𝐿
∂𝑞
� = 0 

Remarques : 

• Pour un mouvement unidimensionnel 𝑥,  l’équation de Lagrange s’écrit : 

𝐝
𝐝𝐭
�𝛛𝑳
𝛛𝒙̇
� − �𝛛𝑳

𝛛𝒙
� = 𝟎   

• Pour un mouvement rotationnel 𝜃,  l’équation de Lagrange s’écrit : 

𝐝
𝐝𝐭
�𝛛𝑳
𝛛𝜽̇
� − �𝛛𝑳

𝛛𝜽
� = 𝟎  

I.3.2 Exemples d’oscillateurs harmoniques 
 
Exemple 1 : Pendule élastique vertical  
Un pendule élastique est constitué d’une  masse suspendue à un ressort de  
raideur k et peut donc osciller verticalement avec une élongation  𝑥(𝑡). 
Le système nécessite une seule coordonnée généralisée x(t) qui peut décrire 
le mouvement de la masse m et  de l’extrémité mobile du ressort. 
Donc le système a un seul degré de liberté d=N=1. 
 
  
 

⇒ 𝑁 = 6 

M1 M2 

l 

𝒌 

𝒎 

𝒙 

Position 
d’équilibre 

𝒙𝟐 

𝒙𝟏 
𝒌𝒙 

 

𝒎𝒙̈ 

𝒎 
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• L’énergie cinétique du système:   𝑻 =  𝟏
𝟐
𝒎𝒙̇𝟐 

• L’énergie potentielle du système: l’énergie 𝑈 emmagasinée dans le ressort  dépend de 
l’allongement des 2 extrémités du ressort. Elle s’exprime: 

𝑼 = 𝟏
𝟐
𝒌(𝒙𝟐 − 𝒙𝟏)𝟐 = 𝟏

𝟐
𝒌𝒙𝟐       avec    𝒙𝟐 = 𝒙 ;   𝒙𝟏 = 𝟎 

 
 

�𝑑𝑈 = 𝐹𝑟 ∙�����⃗ 𝑑𝑥����⃗ = −(−𝑘𝑥𝑑𝑥) ⟹ 𝑈 = �𝑘𝑥𝑑𝑥 =
1
2
𝑘𝑥2

𝑥

0

� 

La fonction de Lagrange : 𝐿 = 𝑇 − 𝑈 ⟹ 𝐿 = 1
2
𝑚𝑥̇2 −  1

2
𝑘𝑥2 

L’équation de Lagrange : d
dt
�∂𝐿
∂𝑥̇
� − �∂𝐿

∂𝑥
� = 0 

 

     ∂𝐿
∂𝑥̇

= 𝑚𝑥̇ ⟹ d
dt
�∂𝐿
∂𝑥̇
� = 𝑚𝑥̈ 

     ∂𝐿
∂𝑥

= −𝑘𝑥 

                        On divisant par m                𝒙̈ + 𝒌
𝒎
𝒙 = 𝟎 

Le rapport 𝑘
𝑚

  étant positif et en posant : 𝝎𝟎 = �𝒌
𝒎

    on obtient l’équation différentielle d’une vibration 

harmonique de la forme : 𝒙̈ + 𝝎𝟎
𝟐𝒙 = 𝟎. 

 

 La pulsation 𝜔0 ne dépend que de la masse 𝑚 et de la raideur 𝑘 du ressort, est appelée « la pulsation 

propre » du système.  

 La masse oscille donc indéfiniment avec une période propre 𝑇0  donnée par la relation suivante:                   

𝑻𝟎 =  𝟐𝝅
 𝝎𝟎

= 𝟐𝝅�𝒎
𝒌 

 

Exemple 2 : Pendule  pesant simple 
 
Un pendule simple est constitué d’un solide de petite dimension de masse m suspendu à un point fixe O par 
un fil inextensible de longueur L. Ecarté de sa position d’équilibre, il oscille dans le champ de pesanteur 
terrestre g. 
 
Les coordonnées du système :   
                                                                                            

   𝑚� 𝑥 = 𝑙 sin𝜃 ⟹ 𝑥̇ = 𝑙𝜃̇ cos𝜃
𝑦 = 𝑙 cos 𝜃 ⟹ 𝑦̇ = −𝑙𝜃̇ sin𝜃

� 

 L’énergie cinétique du système :   𝑻 =  𝟏
𝟐
𝒎𝒗𝒎𝟐 

 ⟹ 𝑇 =  1
2
𝑚(𝑥̇ + 𝑦̇)2 =  1

2
𝑚𝑙2𝜃̇2(cos𝜃2 + sin 𝜃2) 

                       ⟹  𝑻 =  𝟏
𝟐
𝒎𝒍𝟐𝜽𝟐̇ 

 
 
 

 ⇒  𝑚𝑥̈ − (− 𝑘𝑥) = 0 

𝑦 

𝜃 
𝑙 

𝑚 

ℎ(2ème cas)  

𝑥 

𝑥′ 

𝑂 

𝑂′ 

𝑚𝑔 

 

ℎ (1𝑒𝑟  𝑐𝑎𝑠) 
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 L’énergie potentielle du système :  𝑼 = 𝒎𝒈𝒉  (h est la hauteur de m par rapport à un plan de 
référence donnée.)  

NB : On a deux possibilités pour calculer la valeur du déplacement  h, selon le choit de l’origine des 
énergies potentielles (U(0)=0), ce choit doit avoir lieu lorsque la masse est dans sa position d’équilibre θ = 0. 
L’énergie potentielle correspond à l’énergie potentielle de pesanteur. 

1er cas : si on choisi comme origine des énergies potentielles l’axe  (𝑶𝒙)  on a donc : 
 ℎ = − 𝑙. cos 𝜃 (Le signe moins vient du fait que la masse m est inférieur à l’axe choisi). 
Dans ce cas :                                       𝑼 = −𝒎𝒈𝒍. 𝐜𝐨𝐬 𝜽. 
2ème cas : si on choisit comme origine des énergies potentielles (U(0)=0)  l’axe (𝑶′𝒙’). 
 À l’équilibre, on aura : ℎ = 𝑙 − 𝑙. cos 𝜃. Dans ce cas :  

 
 
Calcule du lagrangien : 𝑳 = 𝑻 − 𝑼 
1er cas : On remplaçant T et U dans L on trouve :   𝐿 =  1

2
𝑚𝑙2𝜃2̇ + 𝑚𝑔𝑙. cos 𝜃 

L’équation de Lagrange : 
d
dt
�
∂𝐿
∂𝜃̇
� − �

∂𝐿
∂𝜃
� = 0 

⎩
⎪
⎨

⎪
⎧

d
dt
�
∂𝐿
∂𝜃̇
� = 𝑚. 𝑙.2 𝜃̈… … … … … … … … … (1)

�
∂𝐿
∂𝜃
� = −𝑚.𝑔. 𝑙. 𝑠𝑖𝑛 𝜃… … … … … … . (2)

(1) − (2): 𝑚. 𝑙.2 𝜃̈ + 𝑚.𝑔. 𝑙. 𝑠𝑖𝑛 𝜃 = 0

�  

Dans le cas des faibles oscillations, les angles sont très petits on a : �
𝑠𝑖𝑛 𝜃 ≈ 𝜃

cos 𝜃 ≈ 1 − 𝜃2

2
≈ 1

� 

On aura donc  𝑚. 𝑙.2 𝜃̈ + 𝑚.𝑔. 𝑙.𝜃 = 0,  En divisant par 𝑚. 𝑙.2 on trouve : 
 

C’est l’équation de l’oscillateur harmonique de pulsation propre : 𝝎𝟎 = �𝒈
𝒍
    

On trouve enfin :     𝜽̈+𝝎𝟎
𝟐𝜽 = 𝟎. 

 

2ème cas : 𝐿 =  1
2
𝑚𝑙2𝜃2̇ + 𝑚𝑔𝑙(1 − cos 𝜃) 

d
dt
�
∂𝐿
∂𝜃̇
� = 𝑚. 𝑙.2 𝜃̈… … … … … … … … … (1)

�
∂𝐿
∂𝜃
� = −𝑚.𝑔. 𝑙. 𝑠𝑖𝑛 𝜃… … … … … … . (2)

(1) − (2): 𝑚. 𝑙.2 𝜃̈ + 𝑚.𝑔. 𝑙. 𝑠𝑖𝑛 𝜃 = 0

 

On aura donc  𝑚. 𝑙.2 𝜃̈ + 𝑚.𝑔. 𝑙.𝜃 = 0,  On divisant par 𝑚. 𝑙2 on trouve : 

𝜃̈ + 𝑔
𝑙
𝜃 = 0 Avec 𝜔0 = �𝑔

𝑙
   ,  et on retrouve bien le même résultat. 

 

 

𝜽̈ +
𝒈
𝒍
𝜽 = 𝟎 

 

𝑼 = 𝒎𝒈𝒍(𝟏 − 𝐜𝐨𝐬 𝜽) 
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I.3.3 Solution de l’équation différentielle du mouvement 

L’équation différentielle  (EDF) du mouvement est de la forme : 

𝒙̈ + 𝝎𝟎
𝟐𝒙 = 𝟎 

C’est une équation différentielle du second ordre sans second membre dont la solution sous la forme 
complexe est de la forme : 𝑥(𝑡) = 𝐴𝑒𝛼𝑡  

La dérivée première de la fonction 𝑥(𝑡)) (la vitesse) :  𝑥̇(𝑡) = 𝐴𝛼𝑒𝛼𝑡. 

La dérivée seconde de la fonction 𝑥(𝑡) (l’accélération) : 𝑥̈(𝑡) = 𝐴𝛼2𝑒𝛼𝑡 

On remplace dans l’EDF : 𝐴𝛼2𝑒𝛼𝑡 + 𝜔0
2𝐴𝛼𝑒𝛼𝑡 = 0 ⟹𝐴𝑒𝛼𝑡(𝛼2 + 𝜔0

2) = 0 

Or          𝐴𝑒𝛼𝑡 ≠ 0 ⟹ 𝛼2 + 𝜔0
2 = 0 𝑑𝑜𝑛𝑐 𝛼 = ±𝑗𝜔0 

Donc la solution aura la forme:  𝑥(𝑡) = 𝐴1   𝑒𝑗𝜔0𝑡 + 𝐴2   𝑒−𝑗𝜔0𝑡 

Selon la relation d’Euler : 𝑒±𝑗𝜔0𝑡 = cos 𝜔0𝑡 ± 𝑗𝑠𝑖𝑛 𝜔0𝑡 

→ 𝑥(𝑡) = 𝐴1   (cos 𝜔0𝑡 + 𝑗𝑠𝑖𝑛 𝜔0𝑡) + 𝐴2   (cos 𝜔0𝑡 − 𝑗𝑠𝑖𝑛 𝜔0𝑡)  

𝑥(𝑡) = (𝐴1   + 𝐴2   ) cos 𝜔0t + 𝑗(𝐴1   − 𝐴2   )𝑠𝑖𝑛 𝜔0𝑡 = C cos 𝜔0t + D𝑠𝑖𝑛 𝜔0𝑡 

Tel que : C =(𝐴1   + 𝐴2   ) et  D = 𝑗(𝐴1   − 𝐴2   ) 

Donc 𝑥(𝑡) = C cos 𝜔0t + D𝑠𝑖𝑛 𝜔0𝑡   est aussi une  solution de l’équation différentielle. 

Si on pose : 𝐶 = 𝑎. 𝑐𝑜𝑠 𝜃 et 𝐷 =  𝑎.sin𝜃 , on aura : 𝑥(𝑡) = 𝑎. 𝑐𝑜𝑠 𝜃 cos 𝜔0t + 𝑎.sin𝜃 𝑠𝑖𝑛 𝜔0𝑡    

𝑐𝑜𝑠(𝑥 −  𝑦)  ≡  𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦 +  𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 donc : 𝑥(𝑡) = a cos( 𝜔0t −  𝜃) = a cos( 𝜔0t +  𝜑) , 𝜑 = 𝜃 + 𝜋
2
 

 
donc : 𝒙(𝒕) = 𝐚 𝐜𝐨𝐬( 𝝎𝟎𝐭 +  𝝋)Tel que :  𝒂 = √𝑪𝟐 + 𝑫𝟐 et 𝜽 = 𝐚𝐫𝐜 𝐭𝐚𝐧𝐠(𝑫

𝑨
) 

 

I.4 La force dans le mouvement harmonique 

I.4.1 Exemple du pendule élastique vertical 

C’est le cas d’une masse 𝑚 accrochée à l’extrémité libre  
d’un ressort et se déplaçant sans frottement suivant une  
direction 𝑂𝑥 vertical (voir figure). 
 
 

 

 

 
 
 
 
 

  Ressort à vide Mouvement          Equilibre avec  
            une  masse 

∆𝒍 + 𝒙 

 

𝑃�⃗ = 𝑚𝑔⃗ 

𝑚 

𝑙0 
𝑇�⃗  

∆𝒍 

𝒙 

(a) (b) (c) 

𝑇�⃗  
𝑚 

𝑃�⃗ = 𝑚𝑔⃗ 
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A l’équilibre : il y a deux forces qui agissent sur la masse m ; son poids et la force de rappel du ressort 
tension due au ressort : 

∑ 𝐹⃗ = 𝑃�⃗ + 𝑇�⃗ = 0 ���⃗  ⟹𝑚𝑔 − 𝑘∆𝑙 = 0 

• 𝑃�⃗    : Poids de la masse m. 
• 𝑇�⃗    : Force de rappel du ressort. 

 
En mouvement : La deuxième loi de Newton (principe fondamental de la dynamique), nous permet 
d’écrire : 

�𝐹⃗ = 𝑚𝛾⃗ 

Pour un système à une dimension :   

𝐹 = 𝑚
𝑑2𝑥
𝑑𝑡2

= 𝑚𝑥̈ 

Après projection on obtient   𝑚𝑥̈ = 𝑚𝑔 − 𝑘(𝑥 + 𝛥𝑙). En utilisant la condition d’équilibre précédente on 
obtient :  

𝑚𝑥̈ = −𝑘𝑥 ⟹ 𝑚𝑥̈ + 𝑘𝑥 = 0 

Or :         𝜔2
0 = 𝑘

𝑚
 ⟹   𝑚𝑥̈ + 𝑚𝜔2

0 𝑥 = 0 

⟹𝒎𝒙̈ = −𝒌𝒙 = −𝒎𝝎𝟐
𝟎 𝒙 ;   C’est la force de rappel due au ressort 

avec  𝒌 = 𝒎𝝎𝟐
𝟎 = cte 

Donc, la force dans les mouvements harmoniques simples est proportionnelle et opposée au déplacement 
et constitue une force de rappel.  
 
I.4.2  L’étude d’une vibration harmonique en termes d’énergies 
 
Nous voulons montrer que l’énergie totale (mécanique), E=T+U, est constante et déduire la valeur de cette 
constante. Pour cela prenons 𝑥 = 𝐴𝑐𝑜𝑠(𝜔0𝑡 + 𝜑), alors : 
 

𝐸 = 𝑇 + 𝑈 =
1
2
𝑚𝑥̇2 +

1
2

k 𝑥2 =
1
2
𝑚𝐴2𝜔2

0𝑠𝑖𝑛2(𝜔0𝑡 + 𝜑) +
1
2
𝑘𝐴2𝑐𝑜𝑠2(𝜔0𝑡 + 𝜑) 

 
Sachant que (sin2 𝜑 + cos𝜑2 = 1) et en utilisant la relation :  𝑘 = 𝑚𝜔2

0    
alors,    𝑬 = 𝟏

𝟐
𝒎𝑨𝟐𝝎𝟐

𝟎 = 𝟏
𝟐
𝒌𝑨𝟐 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

                                                                  
                                                                      Tmax              Umax 
Nous retrouvons ici le fait que l’énergie mécanique de ce système ne varie pas.  L’énergie totale est 
constante.  

On a: 𝑇 =  1
2
𝑚𝑥̇2 =  1

2
𝑚𝐴2𝜔2

0𝑠𝑖𝑛2(𝜔0𝑡 + 𝜑) = 1
2
𝑚𝐴2𝜔2

0[1 − cos2(𝜔0𝑡 + 𝜑)]. 

⟹ T = 1
2
𝑚𝐴2𝜔2

0 �1 −
𝑥2

𝐴2
� = 𝟏

𝟐
𝒎𝝎𝟐

𝟎[𝑨𝟐 − 𝒙𝟐]. 

Si   �𝑥 = 0 ⟹ 𝑇 = 𝑇𝑚𝑎𝑥 = 1
2
𝑚𝜔2

0𝐴2.
𝑥 = ±𝐴 ⟹ 𝑇𝑚𝑖𝑛 = 0

� 
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D’autre part :  𝑈 = 1
2

k 𝑥2 = 𝟏
𝟐
𝒎𝝎𝟐

𝟎𝒙𝟐 

Si �
𝑥 = 0 ⟹ 𝑈 = 𝑈𝑚𝑖𝑛 = 0 (position d′équilibre)

𝑥 = ±𝐴 ⟹ 𝑈 = 𝑈𝑚𝑎𝑥 = 1
2
𝑚𝐴2𝜔2

0
� 

La figure suivante  montre la variation des énergies cinétique, potentielle et totale en fonction de x : 
 

 

 

 

 

 
 L’énergie se transforme d’une énergie cinétique à une énergie potentielle. 
 Quand l’énergie cinétique diminue l’énergie potentielle augmente et vis versa. Cette propriété de est 

appelée conservation de l’énergie totale du système.  
 
I.5 Systèmes équivalents 
Définition : C’est un système simple qu’on représente en générale par un ressort équivalent ou une masse 
équivalente.  
I.5.1 Masse équivalente : Cas d’un  ressort de masse non  négligeable. 

𝑚 : La masse du ressort. 
Au repos : 

• 𝑙 : La longueur du ressort. 
• dm : masse élémentaire située à une  

distance  y du point de suspension.   
En mouvement : 

• 𝑥(𝑡) : Déplacement instantané de l’extrémité mobile du ressort. 
• 𝑑𝑦 : Déplacement de la masse élémentaire =  𝑦

𝑙
𝑥(𝑡) ⟹ sa vitesse =  𝑦

𝑙
𝑥̇(𝑡) 

o La masse linéique du ressort à une distance 𝑙: 𝜌 = 𝑚
𝑙
⟹ 𝑚 = 𝜌 𝑙. 

o La masse de l’élément 𝑑𝑦  du ressort : 𝑚𝑠 =  𝜌 𝑑𝑦 = 𝑚
𝑙

 𝑑𝑦 

⟹ L’énergie cinétique = Σ toutes les énergies de ses éléments; 
 

 

𝑇 = �
1
2

𝑙

0

𝑚
𝑙3
𝑥̇(𝑡)2𝑦2𝑑𝑦 =

1
2
𝑚
𝑙3
𝑥̇(𝑡)2. �

𝑦3

3
� 

 

 

(𝑘,𝑚) 
𝑙 

 

𝑦 

𝑑𝑦 

𝑥(𝑡) 

𝑘 

𝑚𝑒𝑞 

0 

𝑙 
 

(𝑙) 
⟹ 𝑇 = ∫ 1

2
 �𝑚

𝑙
𝑑𝑦� . (𝑦

𝑙
𝑥̇(𝑡)2) 

E 

x -A +A 

𝟏
𝟐
𝒎 𝑨𝟐𝝎𝟐

𝟎 

0 

U    

T   
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𝑇 =  
1
2

(
𝑚
3

)𝑥̇(𝑡)2  ⇔
1
2
𝑚𝑒𝑞 𝑥̇(𝑡)2 ⟹  𝒎𝒆𝒒 =

𝒎
𝟑

 

I.5.2 Ressorts équivalents : On a 3cas : 

1er cas : Ressorts en parallèles (en oppositions) : 

 

 

 

 

 

 

L’élongation de chaque ressort est égale à  x(t) donc : 𝑀.𝑔 =  (𝑘1 + 𝑘2)𝑥 = 𝑘𝑒𝑞. 𝑥 ⟹ 𝒌𝒆𝒒 = 𝒌𝟏 + 𝒌𝟐 

2éme cas : Ressorts en séries : 

Soit 𝑥1 : l’élongation du ressort 𝑘1 tel que : 𝑀.𝑔 = 𝑘1 𝑥1   

Soit 𝑥2 : l’élongation du ressort 𝑘2 tel que : 𝑀.𝑔 = 𝑘2 𝑥2   

⟹  𝑥 = 𝑥1 + 𝑥2 =  𝑀.𝑔(
1
𝑘1 

+
1
𝑘2 

) 

1
𝑘𝑒𝑞 

=
1
𝑘1 

+
1
𝑘2 

⟹                   𝒌𝒆𝒒 =
𝒌𝟏 𝒌𝟐 

𝒌𝟏 + 𝒌𝟐 
 

3éme cas : Barre liée à 02 ressorts (Distance non négligeable) 

 

 

 

 
 

𝒌𝒆𝒒 = (𝒂+𝒃)𝟐

𝒂𝟐
𝒌𝟐
+𝒃

𝟐
𝒌𝟏

       Si  a=b, on aura :  𝐤𝐞𝐪 = 𝒌𝟏 + 𝒌𝟐 

 

 

 

 

𝒌 

𝑴 
𝒙(𝒕) 

𝒌𝟏 

𝑴 
𝒙(𝒕) 

𝒌𝟐 Ou 𝒌𝒆𝒒 

𝑴 𝒙(𝒕) 

𝒌𝟏 

𝑴 

𝒌𝟐 

𝒌𝒆𝒒 

𝑴 

𝑥1 

𝑥2 

𝒌𝒆𝒒 

𝒎 

𝒌𝟏 𝒌𝟐 

L 

a b 
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I.6 Analogie entre le système mécanique " Masse-ressort" et le système électrique "L-C". 

 
 

 Points clefs 
 

Oscillations libres non amorties 
 

1. Pendule élastique vertical(𝒎,𝒌,𝒙): 

𝒙̈ +  𝝎𝟎
𝟐𝒙 = 𝟎 ⟺

⎩
⎪
⎨

⎪
⎧

𝒙(𝒕) = 𝑨 𝒄𝒐𝒔 (𝝎𝟎𝒕+ 𝝋)  𝒂𝒗𝒆𝒄 

⎣
⎢
⎢
⎢
⎢
⎡
𝝎𝟎 = �𝒌

𝒎
   (𝒑𝒖𝒍𝒔𝒂𝒕𝒊𝒐𝒏  𝒑𝒓𝒐𝒑𝒓𝒆)

𝑻𝟎 =  
𝟐𝝅
 𝝎𝟎

= 𝟐𝝅�
𝒎
𝒌 ⎦

⎥
⎥
⎥
⎥
⎤

 �  

2. Pendule pesant simple (𝒎, 𝒍,𝜽) : 
 

𝜽̈ +  𝝎𝟎
𝟐𝜽 = 𝟎 ⟺

⎩
⎪
⎨

⎪
⎧

𝜽(𝒕) = 𝑨 𝒄𝒐𝒔 (𝝎𝟎𝒕 + 𝝋)  𝒂𝒗𝒆𝒄 

⎣
⎢
⎢
⎢
⎡𝝎𝟎 = �

𝒈
𝒍

   (𝒑𝒖𝒍𝒔𝒂𝒕𝒊𝒐𝒏  𝒑𝒓𝒐𝒑𝒓𝒆)

𝑻𝟎 =  
𝟐𝝅
 𝝎𝟎

= 𝟐𝝅�
𝒍
𝒈 ⎦

⎥
⎥
⎥
⎤

 � 

 L’équation de Lagrange pour un mouvement unidimensionnel x : 𝐝
𝐝𝐭
�𝛛𝑳
𝛛𝒙̇
� − �𝛛𝑳

𝛛𝒙
� = 𝟎;  

 L’équation de Lagrange pour un mouvement rotationnel 𝜃 : 𝐝
𝐝𝐭
�𝛛𝑳
𝛛𝜽̇
� − �𝛛𝑳

𝛛𝜽
� = 𝟎;  

 L’énergie mécanique se conserve : 𝑻 + 𝑼 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆; 
 Masse équivalente (Cas où la masse m du ressort n’est pas négligeable) : 𝒎𝒆𝒒 = 𝒎

𝟑
. 

 Ressorts équivalents :  
 

 

⎩
⎪
⎨

⎪
⎧

 𝑹𝒆𝒔𝒔𝒐𝒓𝒕𝒔 𝒌𝟏,𝒌𝟐, …𝒌𝒏 𝒆𝒏 𝒑𝒂𝒓𝒂𝒍𝒍è𝒍𝒆𝒔: 𝒌𝒆𝒒 = 𝒌𝟏 + 𝒌𝟐 + ⋯ . . +𝒌𝒏
𝐑𝐞𝐬𝐬𝐨𝐫𝐭𝐬 𝒌𝟏,𝒌𝟐, …𝒌𝒏 𝒆𝒏 𝒔é𝒓𝒊𝒆 : 𝟏

𝒌𝒆𝒒 
= 𝟏

𝒌𝟏 
+ 𝟏

𝒌𝟐 
+ ⋯… + 𝟏

𝒌𝒏
.

𝑩𝒂𝒓𝒓𝒆 𝒍𝒊é𝒆 à 𝟎𝟐 𝒓𝒆𝒔𝒔𝒐𝒓𝒕𝒔 (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑜𝑛 𝑛é𝑔𝑙𝑖𝑔𝑒𝑎𝑏𝑙𝑒):𝒌𝒆𝒒 = (𝒂+𝒃)𝟐

𝒂𝟐
𝒌𝟐
+𝒃

𝟐
𝒌𝟏

� 

 
 

 

Système mécanique Système électrique 
Déplacement : x(t) Charge électrique q(t) 

Vitesse : 𝑥̇(𝑡) Courant électrique 𝑖 = 𝑑𝑞
𝑑𝑡

 
Accélération : 𝑥̈ Variation du courant : 𝑞̈ 

Masse : m Inductance, bobine, self : L 
Ressort k Inverse de la capacité 1/C 

Force de rappel : 𝑘 x d.d.p entre les bornes d’in condensateur : 𝑞
𝐶
 

Force d’inertie : m𝑥̈ d.d.p entre les bornes de la bobine : L 𝑞̈ 
Energie potentielle : 1

2
𝑘 𝑥2 Energie électrique : 1

2𝐶
𝑞2 

Energie cinétique : 1
2
𝑚𝑥̇2 Energie magnétique : 1

2
𝐿𝑞̇2 
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CHAPITRE II 
Oscillations libres amorties : Systèmes à un degré de liberté 

 
Introduction : Le pendule élastique comme le pendule pesant, se comporte comme un oscillateur 
harmonique à la condition de négliger tout frottement. Il oscille alors théoriquement sans jamais s’arrêter. 
En réalité, la masse se déplace dans un fluide (en général l’air) où il existe toujours des forces de 
frottement de type visqueux. L’oscillateur est alors amorti et fini par s’arrêter. 

II.1 Oscillations libres amorties  
La présence de frottements implique une dissipation d’énergie sous forme de chaleur ; on observe alors 

• soit des oscillations dont l’amplitude diminue au cours du temps, 
• soit un retour à l’équilibre sans oscillation. 

On parle alors d’amortissement. L'expression de la force de frottement visqueux est la suivante : 
…𝑭𝒒 = −𝜶𝒒̇ 

Tel que : 
𝜶 : est le coefficient de frottement visqueux.  𝜶 : [𝑁. 𝑠/𝑚].   
q : la cordonnée généralisée du système ; 
𝒒̇ : La vitesse généralisée du système. 
 
Le signe moins (-) vient du fait que cette force s'oppose au mouvement en agissant dans la direction et le 
sens contraire à la vitesse. 
Dans un mouvement unidimensionnel  x la force s’écrit sous la forme : 

 𝒇�⃗  = –𝜶 𝒗��⃗  = –𝜶𝒙̇𝒖��⃗  
II.2 Equation de Lagrange dans un système amorti 

En tenant compte de la force de type frottement fluide (coefficient de frottement visqueux 𝛼), l’équation 
de Lagrange dans ce cas devient : 

𝒅
𝒅𝒕
�𝝏𝑳
𝝏𝒒̇
� −   𝝏𝑳

 𝝏𝒒
= 𝑭𝒒 

Sous l’action des forces de frottements, le système dissipe (perde) de l’énergie mécanique sous forme de 
chaleur, il ya donc une relation entre la force  𝑭𝒒 et la fonction de dissipation 𝑫  d’un côté et la fonction 
de dissipation et le coefficient de frottement visqueux 𝛼 : 
 

�𝑭𝒒  = −
𝝏𝑫
𝝏𝒒̇

                𝒆𝒕 𝑫 =
𝟏
𝟐
𝜶𝒒𝟐̇� 

 L’équation de Lagrange dans le cas d’un système amorti devient :  𝒅
𝒅𝒕
�𝝏𝑳
𝝏𝒒̇
� −   𝝏𝑳

 𝝏𝒒
= −𝝏𝑫

𝝏𝒒̇
 

 
II.2.1 Equation différentielle : Système masse-ressort-amortisseur  

Reprenons le cas du pendule élastique (vertical par exemple). L’étude de l’oscillateur amorti se fait de la 
même façon que précédemment mais en ajoutant la force de frottement visqueux. 

A une dimension, l’équation de Lagrange s’écrit : 𝒅
𝒅𝒕
�𝝏𝑳
𝝏𝒙̇
� −  𝝏𝑳

 𝝏𝒙
= −𝝏𝑫

𝝏𝒙̇
 

L’énergie cinétique du système : c’est l’énergie cinétique de la masse m : T= 𝟏
𝟐

 𝒎𝒙̇𝟐 

L’énergie potentielle du système : c’est l’énergie emmagasinée dans le ressort  U= 𝟏
𝟐

 𝒌𝒙𝟐 
 



CHAPITRE II                                        Oscillations libres amorties                   Système à un degré de liberté 2011-2012 
 

Université Ferhat Abbas –Sétif-      Faculté de technologie       Tronc commun sciences et techniques                    N. AKLOUCHE                                                                         
 

Pa
ge

 2
 

La fonction de dissipation :                            𝑫 = 𝟏
𝟐
𝜶𝒙𝟐̇ 

La fonction de Lagrange : 𝐿 =  𝑇 − 𝑈 ⟹ 𝑳 = 𝟏
𝟐
𝒎𝒙̇𝟐 − 𝟏

𝟐
𝒌𝒙𝟐 

            

⎩
⎪
⎨

⎪
⎧
𝒅
𝒅𝒕
�𝝏𝑳
𝝏𝒙̇
� = 𝒎𝒙̈     

 𝝏𝑳
 𝝏𝒙

= −𝒌𝒙
𝝏𝑫
𝝏𝒙̇

= 𝜶𝒙̇

� 

 
En remplaçant dans l’équation de Lagrange on aura :   
 
   𝒎𝒙̈ +  𝒌𝒙 = −𝜶𝒙̇                     𝒙̈ + 𝜶

𝒎
 𝒙̇ + 𝒌

𝒎
𝒙 = 𝟎 

 
 C’est l’équation différentielle du mouvement dans le cas d’un système libre amorti. 
 Par rapport aux oscillations libres non amorties, on reconnaît un nouveau terme (𝜶

𝒎
 𝒙̇) provenant 

de la dissipation d’énergie.  
 La forme générale :         𝒒̈ + 𝜶

𝒎
 𝒒̇ + 𝒌

𝒎
𝒒 = 𝟎 

 Souvent l'équation différentielle est écrite sous une forme dite réduite : 𝒒̈ + 𝟐𝜹 𝒒̇ + 𝝎𝟐
𝟎𝒒 = 𝟎 

  

Tels que : �
𝛿 = 𝛼

2𝑚
[1/𝑆]: 𝑭𝒂𝒄𝒕𝒆𝒖𝒓 𝒅’𝒂𝒎𝒐𝒓𝒕𝒊𝒔𝒔𝒆𝒎𝒆𝒏𝒕.  

𝜉 = 𝛿
𝜔0

 (Sans unité) : 𝑹𝒂𝒑𝒑𝒐𝒓𝒕 𝒅’𝒂𝒎𝒐𝒓𝒕𝒊𝒔𝒔𝒆𝒎𝒆𝒏𝒕.
� 

À une dimension la forme réduite s’écrit : 𝒙̈ + 𝟐𝜹 𝒙̇ + 𝝎𝟐
𝟎𝒙 = 𝟎 

II.2.2  La solution de l’équation différentielle : Système masse-ressort-amortisseur 

L’équation différentielle du mouvement : 𝒙̈ + 𝟐𝜹 𝒙̇ + 𝝎𝟐
𝟎𝒙 = 𝟎 

Il s’agit d’une équation différentielle linéaire du second ordre à coefficients constants sans second 
membre. 
La fonction 𝑥(𝑡) = 𝐷𝑒𝑟𝑡 est une solution particulière de cette équation différentielle à condition que 𝑟 
soit une des deux racines 𝑟1 et 𝑟2 de l’équation du second degré, appelée équation caractéristique. 

𝑟2 + 2𝛿𝑟 + 𝜔0
2 = 0 

La solution générale de l’équation prend la forme : 𝑥(𝑡) = 𝐶1𝑒𝑟1𝑡 +  𝐶2𝑒𝑟2𝑡 

Tel que: �
𝒓𝟏 =   −𝜹 + �𝜹𝟐 − 𝝎𝟎

𝟐

𝒓𝟐 =   −𝜹 − �𝜹𝟐 − 𝝎𝟎
𝟐
� ; On voit bien que la solution dépend des valeurs de 𝛿 et 𝑤0. 

 
1er cas :  𝜹 < ω0  (0 < 𝜉 < 1)   : système sous- amorti ou faiblement amorti  
                             ⟹ 𝛿2 − 𝜔0

2 < 0 

⟺ � 𝑟1 = −𝛿 + �𝑗2(𝜔0
2  − 𝛿2) =− 𝛿 + 𝑗�𝜔0

2  − 𝛿2 = − 𝜹 + 𝒋𝝎𝒂

𝑟2 =  −𝛿 − �𝑗2(𝜔0
2  − 𝛿2) = − 𝛿 − 𝑗�𝜔0

2  − 𝛿2 = − 𝜹 − 𝒋𝝎𝒂

� 

 
𝜔𝑎 =  �ω0

2  − δ2 = 𝑤0 �1 − 𝜉2   : C’est la Pulsation des oscillations amorties 
 
𝑻𝒂= 𝟐𝝅

𝝎𝒂
= 𝟐𝝅

�𝝎𝟎𝟐  −𝜹𝟐
= 𝟐𝝅

𝝎𝟎�𝟏−
𝛿2

𝜔02

 = 𝑻𝟎
�𝟏−𝝃𝟐

       Donc : 𝑻𝒂= 𝑻𝟎
�𝟏−𝝃𝟐

; 𝑻𝒂: pseudo-période 

𝒌 

     𝒎 

𝒙 

𝜶 𝒌𝒙 

 

𝜶𝒙̇ 

 

𝒎𝒙̈ 

𝒎 
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La solution :                       𝒙(𝒕) = 𝑪 𝒆−𝜹𝒕 𝐬𝐢𝐧(𝝎𝒂𝒕 + 𝝋) 

Remarques : 

• 𝒙(𝒕) représente un mouvement vibratoire. 
• L’amplitude 𝑪 𝒆−𝜹𝒕 est décroissante : 𝒙(𝒕)  

tend vers 0 quand t augmente. 
• l’élongation  x(t) va osciller en restant comprise 

entre – 𝑪 𝒆−𝜹𝒕et 𝑪 𝒆−𝜹𝒕.Ces deux exponentielles 
représentent l’enveloppe du mouvement de 

           l’oscillateur c’est-à-dire les positions extrémales 
prises par x lorsque le temps s’écoule. 
 
2 éme cas :   𝜹 = ω0   (𝜉 = 1 )   : Amortissement critique :  𝑟1 = 𝑟2=  −𝛿 
 
La solution :            𝒙(𝒕) = (𝑪𝟏 +  𝑪𝟐𝒕) 𝒆−𝜹𝒕 

Si  𝛿 = 𝛼
2𝑚

 et  𝜔0= �𝑘
𝑚
⟹   𝜶 =  𝜶𝒄 = 𝟐√𝒌𝒎 : Valeur 

critique du coefficient de frottement. 
 
Remarques : 

• 𝒙(𝒕) n’est pas oscillatoire car il ne contient pas un 
terme sinusoidal. 

• 𝒙(𝒕) tend vers 0 sans oscillation quand le temps 
augmente.  

• Le système revient à sa position d’équilibre le plus 
rapidement possible. 

 
3 éme cas :   𝛿 > ω0  (𝜉 > 1)   : système sur- amorti ou fortement amorti  

          �𝑟1 =   −𝛿 + �𝛿2 − 𝜔0
2

𝑟2 =   −𝛿 − �𝛿2 − 𝜔0
2
� 

La solution :   
    
𝒙(𝒕) = 𝒆−𝜹𝒕(𝑪𝟏 𝒆�𝜹𝟐−𝝎𝟎𝟐𝒕 +  𝑪𝟐𝒆−�𝜹

𝟐−𝝎𝟎𝟐𝒕)  
 
Remarques : 

• 𝒙(𝒕) tend vers 0 sans oscillation quand le temps  
augmente. 

• 𝒙(𝒕) est un mouvement non sinusoïdal 
 
II.3  L’oscillateur harmonique électrique 
Nous allons voir maintenant qu'il existe un autre type d'oscillateur harmonique amorti dans un autre 
domaine de la physique : l'électricité. 
Soit  un circuit électrique, constitué des 3 éléments de base misent en série : 

• un résistor de résistance R ; 
• un condensateur de capacité C ; 
• et une bobine d'inductance L.  

 

 C 𝒆−𝜹𝒕 
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Selon la loi de de Kirchoff :      
  𝑢𝑅  + 𝑢𝐶 + 𝑢𝐿  = 0 ⟹𝑅𝑖(𝑡) + 1

𝑐
 𝑞 + 𝐿 𝑑𝑖

𝑑𝑡
= 0                                   

𝑅 𝑑𝑞
𝑑𝑡

+ 1
𝑐

 𝑞 + 𝐿 𝑑𝑞
2

𝑑𝑡2
= 0 ⟹   𝑅𝑞̇ + 1

𝑐
 𝑞 + 𝐿 𝑞̈ = 0 

𝑞̈ +
𝑅
𝐿
𝑞̇ +

1
𝐿𝑐

 𝑞 = 0 ⟹ 𝑞̈ + 2𝛿 𝑞̇ + 𝜔2
0𝑞 = 0  

 

avec   �
 𝛿 = 𝑅

2𝐿  

 𝜔0
2 = 1

𝐿𝑐

�Donc : 𝒒̈ + 𝟐𝜹 𝒒̇ + 𝝎𝟎𝒒 = 𝟎 ⟹ �
𝜹 = 𝑹

𝟐𝑳  

𝝎𝟎 = � 𝟏
𝑳𝒄

� 

Remarque : 

• Pour un amortissement critique   𝜹 = 𝝎𝟎 ⟹   
𝑹
𝟐𝑳  

=  �𝟏
𝑳𝒄

   Donc :    𝑹 = 𝑹𝒄 =  𝟐�𝑳
𝑪
 

 
II.4 Décrément logarithmique 
Définition : C’est le logarithme du rapport de 2 amplitudes successives des oscillations amorties. 

𝐷 = ln 𝑥(𝑡1)
𝑥(𝑡2)

   ;   𝑡2 = 𝑡1 + 𝑇𝑎 
Où 𝑥(𝑡1) et 𝑥(𝑡1 + 𝑇𝑎) représentent les amplitudes des oscillations aux instants 𝑡1 et  (𝑡1 + 𝑇𝑎): 
généralement ces deux instants sont choisis comme correspondant à deux extrema successifs de même 
signe. Cette quantité mesure la décroissance des amplitudes pendant une période.  
 

 
 
 
 

Pour un système amorti : 
 

 𝑥(𝑡) = 𝐶 𝑒−𝛿𝑡 sin(𝜔𝑎𝑡 + 𝜑) 

⟹ 𝐷 = ln
𝐶 𝑒−𝛿𝑡1 sin(𝜔𝑎𝑡1 + 𝜑)

𝐶 𝑒−𝛿(𝑡1+𝑇𝑎) sin(𝜔𝑎(𝑡1 + 𝑇𝑎) + 𝜑)
 

     𝐷 = ln�𝑒𝛿𝑇𝑎� = 𝛿𝑇𝑎 

𝛿𝑇𝑎 =  δ 𝑇0
�1−𝜉2

= ξ𝜔0
𝑇0

�1−𝜉2
= 2𝜋 𝜉

�1−𝜉2
 ; donc :     

 𝑫 = 𝐥𝐧 𝒙(𝒕𝟏)
𝒙(𝒕𝟐)

= 𝜹𝑻𝒂 = 𝟐𝝅 𝝃
�𝟏−𝝃𝟐

 

Remarques : 
• Pour plusieurs périodes :  𝑇 = 𝑛𝑇𝑎 ;  𝑡2 = 𝑡1 + 𝑛𝑇𝑎  

⟹𝑫 = 𝐥𝐧
𝒙(𝒕𝟏)
𝒙(𝒕𝟐)

= 𝐥𝐧
𝒙(𝒕𝟏)

𝒙(𝒕𝟏 + 𝒏𝑻𝒂)
= 𝒏𝜹𝑻𝒂 = 𝟐𝝅

𝒏𝝃

�𝟏 − 𝝃𝟐
 

• La pseudo-période et le décrément logarithmique n’ont de sens que si le régime est 
pseudopériodique. 

II.5 Facteur de qualité (Facteur de surtension) 

Pour décrire l'amortissement d'un système oscillant mécanique ou électrique on emploie le facteur de 
qualité 𝑸 définit par l’expression suivante : 

𝐷 = ln
𝑥(𝑡1)
𝑥(𝑡2)

= ln
𝑥(𝑡1)

𝑥(𝑡1 + 𝑇𝑎)
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…𝑸 = 𝟐𝝅𝑬𝒎𝒂𝒙
|𝚫𝑬|  

• 𝐸𝑚𝑎𝑥 : est l’énergie maximale stockée dans le système. 
• |Δ𝐸| : est l’énergie perdue par cycle. 
• la notion de ‘qualité’ pour caractériser l’oscillateur, comme la grandeur qui traduit l'aptitude du 

système considéré à garder son énergie tout en oscillant. La qualité est d’autant meilleure que le 
rapport 𝑬𝒎𝒂𝒙|𝚫𝑬|  est grand. 

II.5.1 Calcule du facteur de qualité : système masse-ressort-amortisseur (𝒎,𝒌,𝜶)  

Prenons l’exemple d’un système masse-ressort-amortisseur (𝑚,𝑘,𝛼)  faiblement amorti dont la solution 
de l’équation différentielle est sous la forme : 

𝑥(𝑡) = 𝑥0 sin(𝜔0 𝑡 + 𝜑), 𝑥0 = 𝐶 𝑒−𝛿𝑡 et 𝜔𝑎 = �𝜔02  − 𝛿2 ≈ 𝜔0  

On a d’une part :                            𝐸𝑚𝑎𝑥 = 1
2
𝑚𝜔2

0𝑥0 
2   (Cf.chapitre I). 

D’autre part: Δ𝐸 = ∫ 𝐹(𝑡)𝑑𝑥𝑡+𝑡𝑎
𝑡    

Tel que :  𝐹(𝑡): est la force de frottement visqueux : 𝐹(𝑡) = −𝛼 𝑥̇(𝑡) 
 

⟹ Δ𝐸 = � −𝛼 𝑥̇(𝑡)𝑑𝑥 =

𝑡+𝑇𝑎

𝑡

� −𝛼 𝑥̇(𝑡)[𝑥̇𝑑𝑡] = −𝛼 �  𝑥2̇𝑑𝑡

𝑡+𝑇𝑎

𝑡

 

𝑡+𝑇𝑎

𝑡

 

On a :  𝑥(𝑡) = 𝑥0 sin(𝜔0 𝑡 + 𝜑) ⟹𝑥̇(𝑡) = 𝑥0 𝜔0 cos (𝜔0 𝑡 + 𝜑) 

⟹ Δ𝐸 = −𝛼𝑥20𝜔0 
2 � cos2(𝜔0 𝑡 + 𝜑)  𝑑𝑡

𝑡+𝑇𝑎

𝑡

 

� 𝑐𝑜𝑠²(𝜔0 𝑡 + 𝜑)𝑑𝑡
𝑡+𝑇𝑎

𝑡
= �

1 + cos 2(𝜔0 𝑡 + 𝜑)
2

𝑑𝑡
𝑡+𝑇𝑎

𝑡
⟹ Δ𝐸 =  −

1
2
𝛼𝑇𝑎 𝜔0 

2𝑥02 

𝑇𝑎 =
2𝜋
𝜔𝑎 

;  𝜔𝑎 ≈ 𝜔0 → Δ𝐸 =  −𝛼𝜋𝜔0 𝑥0
2 

 
o On retrouve bien une variation négative de l’énergie c’est-à-dire une perte d’énergie au cours du 

temps. 
o L’énergie perdue se transforme en énergie thermique ou elle se disperse en se diffusant dans le 

milieu avoisinant. 
En remplaçant dans l’expression de 𝑄, on trouve : 

𝑄 = 2𝜋
1
2𝑚𝜔2

0𝑥0 
2

𝜋𝛼𝑥02𝜔0 
= 𝑚𝜔0 

𝛼
⟹ 𝑸 = 𝒎𝝎𝟎 

𝜶
= 𝝎𝟎 

𝟐𝜹
= 𝟏

𝟐𝛏
 

II.5.2 Calcul du facteur de qualité : système électrique  (𝑹𝑳𝑪)  

Dans un système mécanique (𝒎,𝒌): 𝐸𝑚𝑎𝑥 = 1
2
𝑚𝜔2

0𝑥0 
2 (cf. Chapitre I) 

Dans un système électrique (RLC):  𝑬𝒎𝒂𝒙 = 𝟏
𝟐
𝑳𝝎𝟐

𝟎𝒒𝟎𝟐 

Dans un système mécanique (𝒎,𝒌,𝜶):  Δ𝐸 = −𝜋𝛼𝑥02𝜔0  ⟹ Dans un système électrique (RLC): 
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𝚫𝑬 = −𝝅𝑹𝒒𝟎𝟐𝝎𝟎   
Donc :  

𝑸 = 𝟐𝝅 
𝟏
𝟐𝑳𝝎

𝟐
𝟎𝒒𝟎𝟐

𝝅𝑹𝒒𝟎𝟐𝝎𝟎  
=
𝑳𝝎𝟎  

𝑹
,𝝎𝟎 = � 𝟏

𝑳𝑪
⟹  𝑸 =

𝟏
𝑹
�𝑳
𝑪

=
𝟏
𝟐𝝃

 

Remarque : 

• Plus l’amortissement est faible, plus la qualité du système oscillant est grande. Or 𝑄 est d’autant 
plus grand pour un 𝜔0  donné, que l’amortissement est faible. Un système très amorti a un 𝑄 
faible.  
 
 

 
 
 
 
 

 

 Points clefs 
 

                                      Oscillations libres amorties 
 

 L’équation de Lagrange pour un mouvement unidimensionnel  x : 
 

𝒅
𝒅𝒕

(𝝏𝑳
𝝏𝒙̇

) -  𝝏𝑳
 𝝏𝒙

= −𝝏𝑫
𝝏𝒙̇

 ;   𝑫 = 𝟏
𝟐
𝜶 𝒙2̇  

 L’équation du mouvement : 𝒙̈ + 𝟐𝜹 𝒙 + 𝝎𝟐
𝟎𝒙 = 𝟎 ⟹ �

𝜹 = 𝜶
𝟐𝒎

𝝃 = 𝜹
𝒘𝟎

� 

 

 𝑥(𝑡) = 𝐴𝑒𝑟𝑡 est une solution particulière tel que : �
𝒓𝟏 =   −𝜹 +�𝜹𝟐 − 𝒘𝟎

𝟐

𝒓𝟐 =   −𝜹 −�𝜹𝟐 − 𝒘𝟎
𝟐
� 

 
 

Amortissement faible ∶  𝜹 < ω0  (0 < 𝜉 < 1)   ⇒ 𝜹𝟐 − 𝝎𝟎
𝟐 < 𝟎 

 La solution :   𝒙(𝒕) = 𝑪 𝒆−𝜹𝒕 𝐬𝐢𝐧(𝝎𝒂𝒕 + 𝝋)  
 

avec    �
𝝎𝒂 =  �𝝎𝟎

𝟐  − 𝛅𝟐:𝑷𝒖𝒍𝒔𝒂𝒕𝒊𝒐𝒏 𝒅𝒆𝒔 𝒐𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒂𝒎𝒐𝒓𝒕𝒊𝒆𝒔.
𝑻𝒂 =  𝟐𝝅

𝝎𝒂
: 𝒑𝒔𝒆𝒖𝒅𝒐 − 𝒑é𝒓𝒊𝒐𝒅𝒆. … … … … … … … … … … … … … …

� 

 
 
Amortissement critique:   𝜹 = ω0   (𝝃 = 𝟏 )  
 La solution :   𝒙(𝒕) = (𝑪𝟏 +  𝑪𝟐) 𝒆−𝜹𝒕  𝑎𝑣𝑒𝑐  𝜶 =  𝜶𝒄 = 𝟐√𝒌𝒎 

 
Amortissement fort :   𝜹 > ω0  (𝝃 > 1)    
 La solution :     𝒙(𝒕) = 𝒆−𝜹𝒕(𝑫𝟏 𝒆�𝜹𝟐−𝒘𝟎𝟐𝒕 +  𝑫𝟐𝒆−�𝜹

𝟐−𝝎𝟎𝟐𝒕) 
 
 

 Le Décrément logarithmique : 𝑫 = 𝜹𝑻𝒂 
 

 Facteur de qualité : 𝑸 = 𝟐 𝝅. 𝒍′é𝒏𝒆𝒓𝒈𝒊𝒆 𝒔𝒕𝒐𝒄𝒌é𝒆
𝒍’é𝒏𝒆𝒓𝒈𝒊𝒆 𝒑𝒆𝒓𝒅𝒖𝒆 𝒑𝒂𝒓 𝒄𝒚𝒄𝒍𝒆

= 𝒎𝝎𝟎 
𝜶

= 𝑳𝝎𝟎  
𝑹

= 𝟏
𝟐𝛏
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CHAPITRE III 
Oscillations forcées amorties : Systèmes à un degré de liberté 

 
Introduction : On a vu que l’amortissement des oscillations était dû à une diminution de l’énergie 
mécanique sous forme de chaleur dissipée. Pour compenser ces pertes d’énergies et entretenir 
(conserver) les oscillations, il faut une source d’énergie à travers  une force extérieure. On va donc 
rajouter une force extérieure souvent dite excitatrice. 
Il va donc y avoir une force supplémentaire qu’il vaut mieux qu'elle soit colinéaire au mouvement et 
qu'elle soit le plus possible dans le sens du mouvement. 
Dans ce chapitre, on étudie la réponse d’un système amorti à 1 ddl à une excitation harmonique 
sinusoïdale produite par une force extérieure au système. Ce type d’excitation se rencontre fréquemment 
dans l’industrie (machines tournantes, ventilateurs, moteurs, pompes …). 
III.1 Equation différentielle du mouvement 

a) Pour un mouvement de translation, on écrit : 𝒅
𝒅𝒕

(𝝏𝑳
𝝏𝒒̇

) -  𝝏𝑳
 𝝏𝒒

= −𝝏𝑫
𝝏𝒒̇

 + 𝑭𝒆𝒙𝒕 

b) Pour un mouvement de rotation avec un angle 𝜽, on écrit 𝒅
𝒅𝒕

(𝝏𝑳
𝝏𝜽̇

) -  𝝏𝑳
 𝝏𝜽

= −𝝏𝑫
𝝏𝜽̇

 + 𝕄(𝑭𝒆𝒙𝒕) 

 Tel que : 𝕄(𝑭𝒆𝒙𝒕) = 𝑭𝒆𝒙𝒕.𝑳 =  𝝏𝒓
 𝝏𝜽

|𝑭𝒆𝒙𝒕| 
𝕄(𝑭𝒆𝒙𝒕) : Est le moment de la force appliquée [N.m]. 
Le moment : caractérise la capacité d’une force à faire tourner un objet autour d’un point. 
L : Le bras du levier : est la distance droite d’action de la force. 
r : La distance parcourue par la masse dans la direction de l’action de la force. 
III.1.1 Exemple : système masse-ressort-amortisseur 
Reprenons le cas du pendule élastique (vertical par exemple).  
L’étude de l’oscillateur amorti se fait de la même façon que  
précédemment mais en ajoutant une  force extérieure 
A une dimension, l’équation de Lagrange s’écrit : 

                                    𝒅
𝒅𝒕

(𝝏𝑳
𝝏𝒙̇

) -  𝝏𝑳
 𝝏𝒙

= −𝝏𝑫
𝝏𝒙̇

 +𝑭𝒆𝒙𝒕  
Prenons une force sinusoïdale appliquée à la masse m : 𝑭𝒆𝒙𝒕 = 𝑭𝟎 𝐬𝐢𝐧𝝎𝒕. 
L’énergie cinétique du système : c’est l’énergie cinétique de la masse m : T = 1

2
 𝑚𝑥̇2 

L’énergie potentielle du système : c’est l’énergie emmagasinée dans le ressort : U = 1
2

 𝑘𝑥2 

La fonction de dissipation :  𝐷 = 1
2
𝛼𝑥2̇ 

La fonction de Lagrange: L =T-U= 1
2

 𝑚𝑥̇2 − 1
2

 𝑘𝑥2 

⎩
⎪
⎨

⎪
⎧
𝒅
𝒅𝒕
�
𝝏𝑳
𝝏𝒙̇
� = 𝒎𝒙̈     

 𝝏𝑳
 𝝏𝒙

= −𝒌𝒙… . . .

𝝏𝑫
𝝏𝒙̇

= 𝜶𝒙̇… . . …

� 

En remplaçant dans l’équation de Lagrange on aura : 𝒎𝒙̈ +  𝒌𝒙 = −𝜶𝒙̇ + 𝑭𝟎 𝐬𝐢𝐧𝝎𝒕 
On divise alors par m et on trouve :  𝒙̈ + 𝜶

𝒎
 𝒙̇ + 𝒌

𝒎
𝒙 = 𝑭𝟎

𝒎
𝐬𝐢𝐧𝝎𝒕 

Souvent l'équation différentielle est écrite sous la forme réduite : 𝒙̈ + 𝟐𝜹 𝒙̇ + 𝝎𝟐
𝟎𝒙 = 𝑭𝟎

𝒎
𝐬𝐢𝐧𝝎𝒕 

Tels que : �
𝛿 = 𝛼

2𝑚
[1/𝑆]: 𝑭𝒂𝒄𝒕𝒆𝒖𝒓 𝒅’𝒂𝒎𝒐𝒓𝒕𝒊𝒔𝒔𝒆𝒎𝒆𝒏𝒕.  

𝜉 = 𝛿
𝜔0

 (Sans unité) : 𝑹𝒂𝒑𝒑𝒐𝒓𝒕 𝒅’𝒂𝒎𝒐𝒓𝒕𝒊𝒔𝒔𝒆𝒎𝒆𝒏𝒕.
� 

(𝐹𝑒𝑥𝑡). 
𝜶 𝒌 

𝒎 𝒎 𝒙(𝒕) 

𝑭𝒆𝒙𝒕 𝑭𝒆𝒙𝒕 

𝒌𝒙 

 

𝜶𝒙̇ 

 

𝒎𝒙̈ 

𝒎 

L 

r 

𝜃 

𝑭𝒆𝒙𝒕 m 
t=0 t 

L 

O 
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Nous obtenons donc une équation différentielle linéaire du second ordre à coefficients constants avec 
second membre. 
 
III.2 Solution de l’équation différentielle du mouvement 

La solution générale de cette équation différentielle est la somme de deux termes : 
• Une solution de l’équation sans second membre : solution homogène  𝒙𝑯(𝒕), 
• Une solution de l’équation avec second membre : solution particulière  𝒙𝑷(𝒕). 

 
La solution totale de l’équation du mouvement sera donc : 𝒙(𝒕) = 𝒙𝑯(𝒕) +   𝒙𝑷(𝒕) 
 
III.2.1 Solution homogène : 

La solution homogène correspond à la solution de l’équation différentielle sans second membre : 
𝒙̈ + 𝟐𝜹 𝒙 + 𝝎𝟐

𝟎𝒙 = 𝟎 
Il apparaît que la solution de l'équation différentielle homogène est tout simplement la solution trouvée 
pour l'oscillateur harmonique amorti en régime libre dans le cas des oscillations faiblement amorties : 

𝒙𝑯(𝒕) = 𝑪 𝒆−𝜹𝒕 𝐬𝐢𝐧(𝝎𝒂𝒕 + ∅) avec  𝝎𝒂 =  �𝛚𝟎
𝟐  − 𝛅𝟐 

Remarque : 

• La solution générale de l’équation sans second membre 
correspond à un régime transitoire (qui ne dure qu’un 
certain temps). 
 
 

III.2.2 Solution particulière: 
Lorsque la composante  𝒙𝑯(𝒕) devient vraiment négligeable, il 
ne reste plus que la solution particulière, qui est la solution 
imposée par la fonction d'excitation. Nous disons que nous sommes en régime forcé ou régime 
permanent. 
La force excitatrice oblige le système mécanique à suivre une évolution temporelle équivalente à la 
sienne. Donc si 𝐹𝑒𝑥𝑡 est une fonction sinusoïdale de pulsation 𝝎; alors la solution particulière 𝒙𝑷(𝒕) sera 
une fonction sinusoïdale de même pulsation 𝝎. 
Les oscillations de la masse ne sont pas forcément en phase avec la force excitatrice et présente un 
déphasage noté 𝜑. La solution particulière correspondant au régime permanent s’écrit dont : 

 
.  𝒙𝑷(𝒕)= 𝐀𝐬𝐢𝐧 ( 𝝎𝐭 +  𝝋). 

 
Pour des raisons pratiques, il est commode d’utiliser la notation complexe. La grandeur complexe 
associée à x(t) s’écrit : 

𝖟𝐏(𝐭) = 𝐀 𝐞𝐣(𝛚𝐭+𝛗) et 𝑭𝒆𝒙𝒕 = 𝑭𝟎𝐞𝐣𝛚𝐭 
 
Déterminer les grandeurs 𝐀 et 𝝋 revient à chercher le module de l’amplitude complexe. 
 
III.2.2.1 Calcul de l’amplitude 𝐀 
 
𝖟𝐏(𝐭) Vérifie l’équation différentielle  avec second membre : 𝖟𝐏̈ + 𝟐𝜹 𝖟𝐏̇ + 𝝎𝟐

𝟎𝖟𝐏 = 𝑭𝟎
𝒎

ejωt = 𝐵ejωt (*) 
Calculons la dérivée première puis le dérivé second : 
  

𝖟𝐏(𝐭) = 𝐀 𝐞𝐣(𝛚𝐭+𝛗) ⟹ � 𝖟̇𝐏(𝐭) = 𝐀 𝐣𝛚 𝐞𝐣(𝛚𝐭+𝛗) = 𝐣𝛚 𝖟𝐏(𝐭)
𝖟̈𝐏(𝐭) = 𝐀𝐣𝟐𝛚𝟐𝐞𝐣(𝛚𝐭+𝛗) = −𝛚𝟐 𝖟𝐏(𝐭)

� 
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On remplace dans  (*) et on trouve : −ω2 𝔷P(t) +  2𝛿jω 𝔷P(t) + 𝜔2
0  𝔷P(t) = 𝐵ejωt 

                ⟹ [(𝜔2
0 − ω2) + 2𝛿ωj] 𝔷P(t) = [(𝜔2

0 − ω2) + 2𝛿ωj] A ej(ωt+φ) = 𝑩ejωt 

⟹ [(𝜔2
0 − 𝜔2) + 2𝛿𝜔𝑗] 𝐴𝑒𝑗𝜑 = 𝐵 

On divise sur "𝑒𝑗𝜑" et on trouve: [(𝜔2
0 − 𝜔2) + 2𝛿𝜔𝑗] 𝐴 = 𝐵𝑒−𝑗𝜑 … … … (1) 

Le conjugué de cette équation est la suivante : [(𝜔2
0 − 𝜔2) − 2𝛿𝜔𝑗] 𝐴 = 𝐵𝑒𝑗𝜑 … … … (2) 

(1) X (2) ⟹ 𝐴2�(𝜔2
0 − 𝜔2)2 + (2𝛿𝜔)2� = 𝐵2 ⟹ 𝑨 = 𝑩

�(𝝎𝟐𝟎−𝝎𝟐)𝟐+(𝟐𝜹𝝎)𝟐
= cte 

III.2.2.2 Calcul de 𝝋  

[(𝜔2
0 − 𝜔2) + 2𝛿𝜔𝑗] 𝐴 = � 𝐵𝑒−𝑗𝜑

𝐵 (cosφ− 𝑗 𝑠𝑖𝑛𝜑)
� ⟺ �𝐴(𝜔2

0 − ω2) = 𝐵 cosφ 
2𝛿𝜔𝐴 = −𝐵 𝑠𝑖𝑛𝜑

� ⟹ 𝒕𝒈𝝋 =
−𝟐𝜹𝝎

(𝝎𝟐
𝟎 − 𝝎𝟐) 

⟹ 𝜑 = 𝐴𝑟𝑐𝑡𝑔 (
−2𝛿𝜔

(𝜔2
0 − 𝜔2) 

Donc :   𝒙𝑷(𝒕)= 𝑩

��𝝎𝟐𝟎−𝝎𝟐�
𝟐
+(𝟐𝜹𝝎)𝟐

𝒔𝒊𝒏 �𝝎𝐭 + 𝑨𝒓𝒄𝒕𝒈 −𝟐𝜹𝝎
�𝝎𝟐𝟎−𝝎𝟐�

� 

  Remarques: 

• La solution générale de l’équation différentielle s’écrit : 𝒙(𝒕) = 𝒙𝑯(𝒕) +   𝒙𝑷(𝒕). 
• 𝒙𝑯(𝒕) est appelée solution homogène caractérisant un régime transitoire  qui disparaît 

exponentiellement avec le temps. Quand le régime transitoire disparaît : 𝒙(𝒕) ≈   𝒙𝑷(𝒕) 
• 𝒙𝑷(𝒕) est appelée solution particulière d’amplitude 𝐴 = 𝑩

��𝝎𝟐𝟎−𝝎𝟐�𝟐+(𝟐𝜹𝝎)𝟐
  caractérisant un 

régime permanent (stationnaire) car il subsiste aussi longtemps que la force extérieure (𝐹𝑒𝑥𝑡) est 
appliquée. Nous notons la dépendance de l'amplitude A de la pulsation 𝝎. 

• La solution 𝑥(𝑡) aura donc souvent une allure caractéristique comme celle présentée sur la figure 
ci-dessous : 
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III.3 Etude du régime permanent : phénomène de résonance en amplitude 
III.3 .1 La variation de l’amplitude en fonction de la pulsation de la force pour différentes valeurs de 𝛏 : 
Soit 𝐴(𝜔) l’amplitude de la solution particulière caractérisant le régime permanent (forcé) : 

𝑨(𝝎) =
𝑩

�(𝝎𝟐
𝟎 − 𝝎𝟐)𝟐 + (𝟐𝜹𝝎)𝟐

 

𝑨(𝝎) = 𝑩

𝝎𝟐𝟎��𝟏−
𝝎𝟐

𝝎𝟐𝟎
�
𝟐
+(𝟐𝜹)²( 𝝎

𝝎𝟐𝟎
)𝟐

 = 𝑩/𝝎𝟐𝟎

��𝟏−( 𝝎𝝎𝟎
)²�

𝟐
+�𝟐𝜹𝝎𝟎

�²( 𝝎𝝎𝟎
)𝟐

= 𝑨𝟎

��𝟏−( 𝝎𝝎𝟎
)²�

𝟐
+(𝟐𝝃)²( 𝝎𝝎𝟎

)𝟐
 

Tels que : 𝑨𝟎 = 𝑩
𝝎𝟐𝟎

  et  𝜉 = 𝛿
𝝎𝟎

     avec 𝑩 = 𝑭𝟎
𝒎
⟹ 𝑨𝟎 = 𝑭𝟎

𝒎𝝎𝟐𝟎
= 𝑭𝟎

𝒌
      Donc : 𝑨𝟎 = 𝑭𝟎

𝒌
   

𝑨(𝝎) =
𝑨𝟎

��𝟏 − ( 𝝎𝝎𝟎
)²�

𝟐
+ (𝟐𝝃)²( 𝝎𝝎𝟎

)
𝟐
 

Posons r = 𝜔
𝜔0
⟹ 𝐴(𝑟) = 𝑨𝟎

��𝟏−𝐫 𝟐�
𝟐
+(𝟐𝝃𝒓)𝟐

 et cherchons la valeur maximale de 𝐴(𝑟). 

𝑨(𝝎) est maximale quand le dénominateur est minimal. 
Posons r = 𝜔

𝜔0
⟹ 𝐴(𝑟) = (𝟏 − 𝐫 𝟐)𝟐 + (𝟐𝝃𝒓)𝟐 et cherchons la valeur maximale de 𝐴(𝑟). 

𝐴(𝑟)𝑚𝑎𝑥 ⟺
𝑑𝐴(𝑟)
𝑑𝑟

= 0 ⇒ [2(1 − r)²(−2r) + 8ξ2r] = 0 
𝑑𝐴(𝑟)
𝑑𝑟

= 0 ⟹−4𝑟[1 − 𝑟² − 2ξ2] = 0 ⇒ �
𝒓 = 𝟎      

𝒓 = �𝟏− 𝟐ξ2
�    

On a un minimum ou un maximum selon le signe du deuxième dérivée : 

𝑑2𝐴(𝑟)
𝑑𝑟2

= 12𝑟2 + 8ξ2 − 4, donc : �
𝒓 = 𝟎    ⇒ 𝑑2𝐴(𝑟)

𝑑𝑟2 = 8ξ2 − 4 < 0 ; 𝑐𝑎𝑟 0 < 𝜉 < 1  

𝒓 = �𝟏− 𝟐ξ2 ⇒ 𝑑2𝐴(𝑟)
𝑑𝑟2 = 8− 16ξ2 > 0;   𝑐𝑎𝑟 0 < 𝜉 < 1

� 

�

𝜔
𝜔0

= 𝟎… … 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏  𝒓𝒆𝒇𝒖𝒔é𝒆
𝜔
𝜔0

= �𝟏 − 𝟐ξ2
� 

Donc :    𝑨(𝝎)
𝑨𝟎

 𝑒𝑠𝑡 𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒 𝑝𝑜𝑢𝑟 � 𝜔
𝜔0
�
∗

= �𝟏 − 𝟐𝛏𝟐 < 1 ⟹ 𝝃 < 𝟏
√𝟐

 

La variation de l’amplitude en fonction de la pulsation de la force pour différentes valeurs de ξ est 
représentée sur la figure suivante : 
 

 

 

 

 

 

 
 
 
 
 

𝛏 = 𝟎.𝟑 

 

𝛏 = 𝟎.𝟐 

 

𝛏
𝟎 𝟏𝟓 

 

𝛏 = 𝟎.𝟏 

 

𝛏 = 𝟎.𝟓 

 
𝛏 = 𝟏 

 
𝛏 = 𝟑 

 
𝛏 = 𝟏𝟎 

 

𝛏 = 𝟎.𝟒 

 

𝝃=0     

maximum 

𝑨(𝝎)
𝑨𝟎

 

𝝎
𝝎𝟎

 

       Amortissement                       Amortissement 
           Inefficace                                   Efficace 
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Remarques : 
• L’amplitude 𝑨 augmente quand le rapport d’amortissement 𝛏 diminue.  
• L’amplitude de vibration atteint un maximum quand  𝝎 ≅ 𝝎𝟎 : on dit qu’il ya résonance : la 

valeur maximale � 𝝎
𝝎𝟎
�
∗
 (correspondant à la valeur maximale de l’amplitude) n’est pas égale à 1 

mais égale à �𝟏 − 𝟐𝛏𝟐 <1. 
Discussions: 

 Au début d’un mouvement résonnant, lorsque la force est appliquée au système, la majeure partie de 
l’énergie, fournie lors de chaque cycle, est emmagasinée dans le système; une faible partie se dissipe en 
frottement. L’énergie ainsi emmagasinée par le système fait augmenter progressivement l’amplitude de ses 
oscillations jusqu'à une valeur maximum. Cette valeur subsiste tant que subsiste l’apport d’énergie par la 
force extérieure.  

 Plus l’amortissement est faible,  plus cette courbe est aigue et plus le maximum est grand : en l’absence 
d’un  amortissement suffisant rien ne viendrait limiter les amplitudes des oscillations à  s’amplifier, risque 
de destruction du système : le système entre en résonance. Les conséquences peuvent être graves. On peut 
citer deux cas connus : 
 Le 18 avril 1850 à Angers, un régiment traversant au pas cadencé (harmonieux) un pont 

suspendu enjambant le Maine provoqua sa destruction. 
 Le 7 novembre 1940, six mois après son inauguration, le pont suspendu de Tacoma (Etats-

Unis) était détruit par les effets des rafales de vent qui sans être particulièrement violentes 
(60 km.h–1) étaient régulières. 

 
  III.3 .2 La variation de la phase en fonction de la pulsation de la force pour différentes valeurs de 𝛏 : 

Soit  𝝋 la phase initiale  de la solution particulière caractérisant le régime permanent (forcé) tel que :                                                                                    

𝒕𝒈𝝋 = −𝟐𝜹𝝎
�𝝎𝟐𝟎−𝝎𝟐�

 

• Nous remarquons que  𝒕𝒈 𝝋 est négatif. Cela paraît normal qu'il y ait un retard de l'oscillateur par 
rapport à la force qui entretient le mouvement. L'oscillateur harmonique essaie de suivre le 
mouvement en étant ralenti par les frottements, donc il doit obligatoirement prendre du retard par 
rapport à l'oscillation excitatrice donc avoir un déphasage négatif. Ce déphasage est dépendant de 
la pulsation de la force 𝝎. 

  𝑡𝑔𝜑 = −2𝛿𝜔
(𝜔20−𝜔2) = −2𝛿𝜔

𝜔20�1−( 𝜔𝜔0
)2�

=

−2𝛿𝜔
𝜔20

1−( 𝜔𝜔0
)2

 =
−2� 𝛿

𝜔0
�( 𝜔𝜔0

)

1−( 𝜔𝜔0
)2

 

  𝒕𝒈𝝋 =
−𝟐𝛏( 𝝎𝝎𝟎

)

𝟏 − ( 𝝎𝝎𝟎
)𝟐

 

 
• Si  𝜔

𝜔0
= 1( 𝝎 =𝝎𝟎  ) ⟹  𝑡𝑔𝜑 = −∞⟺ 𝜑 =

−𝜋
2

;∀ 𝜉. 

• Si 𝜉 = 0 ⟹  𝑡𝑔𝜑 = 0 ⟺𝜑 = 0 𝑜𝑢 𝜑 = −𝜋 
Remarques : 

• L’oscillateur est en résonance de phase quand 
 𝝋 = −𝝅

𝟐
  pour 𝝎=𝝎𝟎. 

• L’oscillateur est toujours en retard  de phase par rapport à la force et ce retard augmente lorsque la 
pulsation augmente. 

         0.5       1         1.5       2        2.5     
𝝎
𝝎𝟎

 

−𝝅 

−
𝝅
𝟐

 

 

 

 

 

 

    

𝝋 = 𝒇(
𝝎
𝝎𝟎

) 

 

𝝃 = 𝟎 

𝝃 = 𝟎.𝟐𝟓 

𝝃 = 𝟏.𝟐𝟓 
𝝃 = 𝟎.𝟓 

𝝃 = 𝟏 
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• L’oscillateur et la force sont en phase pour 𝝎 = 𝟎  

Conclusions : 
Selon la valeur de ξ on a 3 cas possibles : 

1er cas : Faibles fréquences : 𝛏 ≪ 𝟏 (𝛚 ≪ 𝛚𝟎) → �𝐀 ≈ 𝐀𝟎 = 𝑭𝟎
𝒌

𝝋 = 𝟎
� 

2éme cas : Hautes fréquences : 𝛏 ≫ 𝟏 (𝛚 ≫ 𝛚𝟎) → � 𝐀 ≈ 𝟎
𝝋 = −𝝅

� 

3éme cas : La résonance : 𝛏 = 𝟏 (𝛚 ≈ 𝛚𝟎 ≈ 𝛚𝐫) → �
� 𝝎
𝝎𝟎
�
∗

= �𝟏 − 𝟐𝛏𝟐,  𝑨𝒎𝒂𝒙
𝑨𝟎

= 𝟏
𝟐𝝃�𝟏−𝛏𝟐,

𝝋 = −𝝅
𝟐

�  

Remarques: 

• Si 𝛏 = 𝟎 ( système non amorti) : l’amplitude tend vers l’infini or en réalité, les systèmes sont tous 
amortis donc l’amplitude n’est jamais infini. 

• Si 𝛏 ≪ ( système faiblement amorti) : 𝑨𝒎𝒂𝒙
𝑨𝟎

≈ 𝟏
𝟐𝝃

; (𝛚 ≈ 𝛚𝟎 ≈ 𝛚𝐫) 

III.3 .3  Phénomène de résonance et Facteur de qualité 

• Dans les systèmes éléctriques, ce phénomène permet de calculer le facteur de qualité 𝑄 qui 
augmente lorsque l’amplitude maximale augmente  𝑄 = 𝑨𝒎𝒂𝒙

𝑨𝟎
≈ 𝟏

𝟐𝝃
. 

• Une autre méthode pratique pour déterminer le facteur de qualité : 𝑄 = 𝝎𝟎
𝝎𝟐−𝝎𝟏

 

• Pour caractériser l’acuité (intensité) de la réponse d’un oscillateur en fonction de la pulsation, on 
définit une bande passante : 𝝎𝟐 −𝝎𝟏 

 

Conclusions : 

• Quand 𝛏 augmente  ⟹𝑄 diminue ⟹𝝎𝟐 −𝝎𝟏 augmente ⟹ la courbe de résonance est plus 
large  ⟹ diminution de l’amplitude de résonance donc de la qualité aussi. 

• Les extrémités de la bande passante correspondent à une amplitude de vitesse √𝟐 fois plus petite 
qu’à la résonance. 

 

                           𝝎𝟏      𝝎𝟎      𝝎𝟐                𝝎(𝒓𝒂𝒅. 𝒔−𝟏)                                                                            

𝑨𝒎𝒂𝒙 

𝟐
𝑨𝒎𝒂𝒙
√𝟐

 

 

                                            𝝎𝟏 𝝎𝟎 𝝎𝟐                             𝝎(𝒓𝒂𝒅.𝒔−𝟏)                                                                            

𝑨𝒎𝒂𝒙 

𝟐
𝑨𝒎𝒂𝒙
√𝟐
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 Points clefs 
                                      Oscillations forcées amorties 

 
1. Un mouvement unidimensionnel  x : 

 
 L’équation de Lagrange : 

                                    𝒅
𝒅𝒕

(𝝏𝑳
𝝏𝒙̇

) -  𝝏𝑳
 𝝏𝒙

= −𝝏𝑫
𝝏𝒙̇

 +𝑭𝒆𝒙𝒕 ;   𝑫 = 𝟏
𝟐
𝜶 𝒙2̇ , 𝑭𝒆𝒙𝒕 = 𝑭𝟎 𝐬𝐢𝐧𝝎𝒕 

 l'équation différentielle sous la forme réduite : 𝒙̈ + 𝟐𝜹 𝒙̇ + 𝝎𝟐
𝟎𝒙 = 𝑭𝟎

𝒎
𝐬𝐢𝐧𝝎𝒕 

 Solution de l’équation différentielle du mouvement: 𝒙(𝒕) = 𝒙𝑯(𝒕) +   𝒙𝑷(𝒕) 
 La solution homogène: 𝒙𝑯(𝒕) = 𝑪 𝒆−𝜹𝒕 𝐬𝐢𝐧(𝝎𝒂𝒕+ ∅) avec  𝒘𝒂 =  �𝐰𝟎

𝟐  − 𝛅𝟐 
 La solution particulière :  𝒙𝑷(𝒕)= 𝑭𝟎/𝒎

�(𝝎𝟐𝟎−𝝎𝟐)𝟐+(𝟐𝜹𝝎)𝟐
𝒔𝒊𝒏 (𝝎𝐭+ 𝑨𝒓𝒄𝒕𝒈 ( −𝟐𝜹𝝎

(𝝎𝟐𝟎−𝝎𝟐)) 

 La variation de l’amplitude en fonction de la pulsation de la force : 
 

 𝑨(𝝎)
𝑨𝟎

= 𝟏

��𝟏−( 𝝎𝝎𝟎
)²�

𝟐
+(𝟐𝝃)²( 𝝎𝝎𝟎

)𝟐
⟹ �𝑨(𝝎)

𝑨𝟎
 𝑒𝑠𝑡 𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒 𝑝𝑜𝑢𝑟 � 𝝎

𝝎𝟎
�
∗

= �𝟏 − 𝟐𝛏𝟐� 

 

                      𝒕𝒈𝝋 =
−𝟐𝛏( 𝝎𝝎𝟎

)

𝟏−( 𝝎𝝎𝟎
)𝟐
⟹ �

𝜔
𝜔0

= 1 ⟹  𝑡𝑔𝜑 = −∞⟺ 𝜑 = −𝜋
2

;∀ 𝜉
𝜉 = 0 ⟹  𝑡𝑔𝜑 = 0 ⟺𝜑 = 0 𝑜𝑢 𝜑 = −𝜋

� 

 

 Faibles fréquences : 𝛏 ≪ 𝟏 (𝛚 ≪ 𝛚𝟎) → �𝐀 ≈ 𝐀𝟎 = 𝑭𝟎
𝒌

𝝋 = 𝟎
� 

 Hautes fréquences : 𝛏 ≫ 𝟏 (𝛚 ≫ 𝛚𝟎) → � 𝐀 ≈ 𝟎
𝝋 = −𝝅

� 

 La résonance : 𝛏 = 𝟏 (𝛚 ≈ 𝛚𝟎 ≈ 𝛚𝐫) → �
� 𝝎
𝝎𝟎
�
∗

= �𝟏 − 𝟐𝛏𝟐,  𝑨𝒎𝒂𝒙
𝑨𝟎

= 𝟏
𝟐𝝃�𝟏−𝛏𝟐,

𝝋 = −𝝅
𝟐

�  

 Le facteur de qualité : 𝑄 = 𝑨𝒎𝒂𝒙
𝑨𝟎

≈ 𝟏
𝟐𝝃

= 𝝎𝟎
𝝎𝟐−𝝎𝟏

 
 

2. Un mouvement rotationnel 𝜽 : 
 

 L’équation de Lagrange : 
 
                                    𝒅

𝒅𝒕
�𝝏𝑳
𝝏𝜽̇
� –  𝝏𝑳

 𝝏𝜽
= −𝝏𝑫

𝝏𝜽
 +𝝏𝒓
𝝏𝜽

. |𝑭𝒆𝒙𝒕| ;  𝒓 : est la direction d’action de la force 𝑭𝒆𝒙𝒕 
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CHAPITRE IV 
Oscillations libres des systèmes à plusieurs degrés de liberté 

 
Introduction : Dans ce chapitre, nous examinons les systèmes qui se composent de deux ou plusieurs 
oscillateurs qui sont couplés dans une certaine façon et qui ont plus d'une pulsation d'oscillation. Nous 
allons voir que ce couplage produit de nouveaux et d’importants effets physiques. Chacune des pulsations 
correspondent à une manière différente dans laquelle le système peut osciller. Ces différentes façons sont 
appelés « modes normaux ». Les modes normaux d'un système sont caractérisés par le fait que toutes les 
parties du système oscillent avec la même pulsation. Les oscillateurs sont couplé parce qu’ 
ils se trouvent rarement dans un isolement complet et sont généralement capables d’osciller avec  de 
différentes façons. Les oscillateurs couplés sont également importants car ils ouvrent la voie à la 
compréhension des ondes dans les milieux continus.  Le mouvement des ondes dépend des systèmes 
voisins qui vibre et  qui sont couplées entre elles et peuvent donc transmettre de l’énergie entre elles. 
Définition : 
Un système  est à plusieurs degrés de liberté (ddl) si plusieurs coordonnées indépendantes sont 
nécessaires pour décrire son mouvement. Il y a autant d’équations de Lagrange que de degrés de liberté 
ou de coordonnées généralisées. 

IV.1 Systèmes à 2 degrés de liberté 

Pour l’étude des systèmes à deux degrés de liberté, il est nécessaire d’écrire deux équations différentielles 
du mouvement que l’on peut obtenir à partir des équations de Lagrange : 

⎩
⎨

⎧
d
dt
�
∂𝐿
∂𝑞1̇

� − �
∂𝐿
∂𝑞1

� = 0

d
dt
�
∂𝐿
∂𝑞2̇

� − �
∂𝐿
∂𝑞2

� = 0
� 

Un système à 2 degrés de liberté possède 02 coordonnées généralisées, 02 équations  différentielles et 02 
pulsations propres ( 𝜔1, 𝜔2). 

IV.1 .1 Les type de couplages 

a) Couplage Elastique : Le couplage dans les systèmes mécaniques est assuré par élasticité. Dans les 
systèmes électriques, on trouve les circuits couplés par capacité, ce qui est équivalent au couplage 
par élasticité.  

 
 
𝒌                    
 

 

 

 

Les équations différentielles correspondantes sont : 

�𝒙̈𝟏 + 𝟐𝜹𝟏 𝒙̇𝟏 + 𝝎𝟐𝒙𝟏 = 𝒂𝟏𝒙𝟐
𝒙̈𝟐 + 𝟐𝜹𝟐 𝒙̇𝟐 + 𝝎𝟐𝒙𝟐 = 𝒂𝟐𝒙𝟏

�     Tels que : 𝒂𝟏𝒙𝟐 et 𝒂𝟐𝒙𝟏 sont les termes de couplage. 𝒂𝟏 et 𝒂𝟐 sont des 

                                                         constantes. 
 

𝑚2 

𝜃1 
𝐿1 

𝑚1  

𝜃1 𝐿2 

Pc
Zone de texte 
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b) Couplage Visqueux : Le couplage dans les systèmes mécaniques est assuré par amortisseur. Dans 
les systèmes électriques, on trouve les circuits couplés par résistance, équivalents au couplage par 
amortisseur.  

 
 
 
 
 
 
 

 

Les équations différentielles correspondantes sont : 

�𝒙̈𝟏 + 𝟐𝜹𝟏 𝒙̇𝟏 + 𝝎𝟐𝒙𝟏 = 𝒃𝟏𝒙̇𝟐
𝒙̈𝟐 + 𝟐𝜹𝟐 𝒙̇𝟐 + 𝝎𝟐𝒙𝟐 = 𝒃𝟐𝒙̇𝟏

�     Tels que : 𝒃𝟏𝒙̇𝟐 et 𝒃𝟐𝒙̇𝟏 sont les termes de couplage. 𝒃𝟏 et 𝒃𝟐 sont des 

                                                         constantes. 
 

c) Couplage Inertiel : Le couplage dans les systèmes mécaniques est assuré par inertie. Dans les 
systèmes électriques, on trouve les circuits couplés par inductance, équivalents au couplage par 
inertie.  

 

 

 

 

 

 

 

Les équations différentielles correspondantes sont : 

�𝒙̈𝟏 + 𝟐𝜹𝟏 𝒙̇𝟏 + 𝝎𝟐𝒙𝟏 = 𝒄𝟏𝒙̈𝟐
𝒙̈𝟐 + 𝟐𝜹𝟐 𝒙̇𝟐 + 𝝎𝟐𝒙𝟐 = 𝒄𝟐𝒙̈𝟏

�  Tels que : 𝒄𝟏𝒙̈𝟐 et 𝒄𝟐𝒙̈𝟏 sont les termes de couplage. 𝒄𝟏 et 𝒄𝟐 sont des constantes. 

 
IV.1 .2 Méthode générale de résolution des équations de mouvement. 
Pour un système mécanique, la mise en équation du système couplé passe par la méthode à suivre 
suivante : 
 
1 – On écrit les 2 équations différentielles en fonction des coordonnées généralisées. 
2 – On fait l’hypothèse que le système admet des solutions harmoniques. Ce qui signifie que le système 
peut osciller avec la même pulsation pour tous les oscillateurs.  
3 – La résolution des systèmes d’équations permet d’obtenir 2 pulsations particulières 𝜔1  et 𝜔2 ; 
       ce sont les pulsations propres. 
4 - On substitue ensuite 𝜔1 dans l'une des 2 équations et l’on obtient le 1er mode propre. On substitue 
ensuite 𝜔2 dans l'une des 2 équations et l’on obtient le 2ème mode propre. 
5 – On écrit les 2 solutions générales des équations différentielles du mouvement. 

 

𝜃1 𝐿1 

𝑚1  

𝜃2 
𝐿2 

𝑚2 

𝜃1 
𝐿1 

𝑚1  

𝜃1 
𝐿2 

𝑚2 

𝒌 

𝒌 

𝒙𝟏 

𝒙𝟐 

𝒎 

Pc
Zone de texte 

Pc
Zone de texte 
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IV.1 .3 Exemples de systèmes a 2 DDL 
IV.1 .3.1  Pendules couplés : (Couplage Elastique) 
 
Considérons deux pendules qui sont couplés par un ressort horizontal de 
constante de raideur k à une distance a de l'axe de rotation. 
 
 1. Equations différentielles du mouvement :  

 Les coordonnées des éléments du système : 
La masse 𝑚1 se trouve à une distance 𝑙1 de O. 

 𝒎𝟏  �
𝑥𝑚1 = 𝑙1. 𝑠𝑖𝑛 𝜃 1
𝑦𝑚1 = −𝑙1. 𝑐𝑜𝑠 𝜃 1

� ⟹ �
𝑥̇𝑚1 = 𝑙1𝜃̇1𝑐𝑜𝑠 𝜃 1
𝑦̇𝑚1 =  𝑙1𝜃̇1 sin𝜃 1

� ⟹ 𝑣²𝑚1 = 𝒍𝟏²𝜽̇𝟏𝟐 

La masse 𝑚2 se trouve à une distance 𝑙2 de O. 

𝒎𝟐  �
𝑥𝑚2 = 𝑙2. 𝑠𝑖𝑛 𝜃 2
𝑦𝑚2 = −𝑙2. 𝑐𝑜𝑠 𝜃 2

� ⟹ �
𝑥̇𝑚2 = 𝑙2𝜃̇2𝑐𝑜𝑠 𝜃 2
𝑦̇𝑚2 =  𝑙2𝜃̇2 sin𝜃 2

� ⟹ 𝒗²𝑚2 = 𝒍𝟐²𝜽̇𝟐𝟐 

𝒌 = {𝒂. 𝒔𝒊𝒏𝜽𝟏 − 𝒂. 𝒔𝒊𝒏𝜽𝟐 = 𝒂(𝒔𝒊𝒏𝜽𝟏 − 𝒔𝒊𝒏𝜽𝟐) � 
 L’énergie cinétique du système : 𝑻 = 𝑻𝒎𝟏 + 𝑻𝒎𝟐 =  𝟏

𝟐
𝒎𝒗𝒎𝟏

𝟐 + 𝟏
𝟐
𝒎𝒗𝒎𝟐

𝟐 

 𝑇𝒎𝟏 =  1
2
𝒎𝟏(𝑥̇𝑚1 + 𝑦̇𝑚1)2 =  1

2
𝑚1𝑙1

2𝜃̇12(cos𝜃12 + sin𝜃12) 

                       ⟹  𝑻𝒎𝟏 =  𝟏
𝟐
𝒎𝟏𝒍²𝟏𝜽̇𝟏𝟐 

 𝑇𝒎𝟐 =  1
2
𝒎𝟐(𝑥̇𝑚2 + 𝑦̇𝑚2)2 =  1

2
𝑚2𝑙2

2𝜃̇22(cos 𝜃22 + sin𝜃22) 

                       ⟹  𝑻𝒎𝟐 =  𝟏
𝟐
𝒎𝟐𝒍²𝟐𝜽̇𝟐𝟐 

⟹ 𝑻 =
𝟏
𝟐

(𝒎𝟏𝒍²𝟏𝜽̇𝟏𝟐 + 𝒎𝟐𝒍²𝟐𝜽𝟐𝟐̇ ) 
 L’énergie potentielle du système : 𝑼 = 𝑼𝒌 + 𝑼𝒎𝟏+𝑼𝒎𝟐 

Si on choisi comme origine des énergies potentielles l’axe  (𝑶𝒙)  on a pour les deux masses : 
𝑼𝒎𝟏+𝑼𝒎𝟐 = −𝒎𝟏𝒈𝒍𝟏. 𝐜𝐨𝐬 𝜽𝟏−𝒎𝟐𝒈𝒍𝟐. 𝐜𝐨𝐬 𝜽𝟐(Le signe moins vient du fait que la masse m est inférieur 
à l’axe choisi). 

𝑼 =
𝟏
𝟐
𝒌𝒂2(𝒔𝒊𝒏𝜽𝟏 − 𝒔𝒊𝒏𝜽𝟐)2−𝒎𝟏𝒈𝒍𝟏. 𝐜𝐨𝐬𝜽𝟏−𝒎𝟐𝒈𝒍𝟐. 𝐜𝐨𝐬𝜽𝟐 

 La fonction de Lagrange sera donc : 

 𝑳 = 𝑻 − 𝑼 = 𝟏
𝟐𝒎𝟏𝒍²𝟏𝜽̇𝟏

𝟐 + 𝟏
𝟐𝒎𝟐

𝒍²𝟐𝜽̇𝟐
𝟐 − 𝟏

𝟐
𝒌𝒂2(𝒔𝒊𝒏𝜽𝟏 − 𝒔𝒊𝒏𝜽𝟐)2+𝒎𝟏𝒈𝒍𝟏. 𝐜𝐨𝐬𝜽𝟏+𝒎𝟐𝒈𝒍𝟐. 𝐜𝐨𝐬𝜽𝟐 

On remarque bien deux coordonnées généralisées qui décrit le mouvement donc on aura deux équations 
de Lagrange : 

⎩
⎪
⎨

⎪
⎧ d

dt
�
∂𝐿
∂𝜃1̇

� − �
∂𝐿
∂𝜃1

� = 0

d
dt
�
∂𝐿
∂𝜃2̇

� − �
∂𝐿
∂𝜃2

� = 0

� 

⎩
⎪
⎨

⎪
⎧d

dt
�
∂𝐿
∂𝜃1̇

� = 𝒎𝟏𝒍𝟐𝟏𝜽̈𝟏 … … … … … … … … … … … … … . .

�
∂𝐿
∂𝜃1

� = −ka2𝒄𝒐𝒔𝜽𝟏(𝒔𝒊𝒏𝜽𝟏 − 𝒔𝒊𝒏𝜽𝟐) −𝒎𝟏𝒈𝒍𝟏𝒔𝒊𝒏𝜽𝟏

�

⟹ 𝒎𝟏𝒍𝟐𝟏𝜽̈𝟏 + 𝒌𝒂𝟐𝒄𝒐𝒔𝜽𝟏(𝒔𝒊𝒏𝜽𝟏 − 𝒔𝒊𝒏𝜽𝟐) + 𝒎𝟏𝒈𝒍𝟏𝒔𝒊𝒏𝜽𝟏 = 𝟎 

Dans le cas des faibles oscillations, les angles sont très petits on a : �
𝑠𝑖𝑛 𝜃 ≈ 𝜃

cos 𝜃 ≈ 1 − 𝜃2

2
≈ 1

� 

O O 

y y 
x 

a 

𝑚2 

𝒌 

𝜃1 
𝑙1 

𝑚1 

𝜃1 𝑙2 
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⟹𝒎𝟏𝒍𝟐𝟏𝜽̈𝟏 + 𝒌𝒂𝟐(𝜽𝟏 − 𝜽𝟐) + 𝒎𝟏𝒈𝒍𝟏𝜽𝟏 = 𝟎 
Donc les 02 équations différentielles du mouvement sont : 

�𝒎𝟏𝒍²𝟏𝜽̈𝟏 + (𝒌𝒂𝟐 + 𝒎𝟏𝒈𝒍𝟏)𝜽𝟏 = 𝒌𝒂²𝜽𝟐 … … … . (1)
𝒎𝟐𝒍²𝟐𝜽̈𝟐 + (𝒌𝒂𝟐 + 𝒎𝟐𝒈𝒍𝟐)𝜽𝟐 = 𝒌𝒂²𝜽𝟏 … … … . (2)

� 

Remarque 
• Le terme de couplage 𝒌𝒂² est en fonction de 𝒌 donc le couplage est élastique. 
• Si 𝒂 = 𝟎 𝒐𝒖 𝒌 = 𝟎 ⟹ couplage nul : les deux systèmes sont indépendant. 
• Les deux équations différentielles possèdent 02 solutions 𝜽𝟏(𝒕)𝒆𝒕 𝜽𝟐(𝒕).  

 2. On fait l’hypothèse que le système admet des solutions harmoniques : 

Donc :  𝜽𝟏(𝒕) = 𝑨𝟏𝒔𝒊𝒏(𝝎𝒕 + 𝝋) et 𝜽𝟐(𝒕) = 𝑨𝟐𝒔𝒊𝒏(𝝎𝒕 + 𝝋′) 
Tels que : 𝑨𝟏, 𝑨𝟐, 𝝋 et 𝝋′, 𝝎 est l’une des pulsations propres du système. 

�𝜽𝟏
(𝒕) = 𝑨𝟏𝒔𝒊𝒏(𝝎𝒕 + 𝝋) ⟹ 𝜽̈𝟏 = −𝝎²𝜽𝟏

𝜽𝟐(𝒕) = 𝑨𝟐𝒔𝒊𝒏(𝝎𝒕 + 𝝋′) ⟹ 𝜽̈𝟐 = −𝝎²𝜽𝟐
� 

On remplace dans les équations (1) et (2) donc : 

�
(𝒌𝒂𝟐 + 𝒎𝟏𝒈𝒍𝟏 −𝒎𝟏𝒍²𝟏 𝝎²)𝜽𝟏 − 𝒌𝒂²𝜽𝟐 = 0 … … … . (3)
 −𝒌𝒂²𝜽𝟏 + (𝒌𝒂𝟐 + 𝒎𝟐𝒈𝒍𝟐 −𝒎𝟐𝒍²𝟐 𝝎²)𝜽𝟐 = 0 … … . (4)

�  

 3. Calcul des pulsations propres : On suppose que 𝒎𝟏 = 𝒎𝟐 = 𝒎, 𝒍𝟏 = 𝒍𝟐 = 𝒍 

�𝑘𝑎
2 + 𝑚𝑔𝑙 − 𝑚𝑙² 𝜔² −𝑘𝑎²

−𝑘𝑎² 𝑘𝑎2 + 𝑚𝑔𝑙 − 𝑚𝑙² 𝜔²
� �𝜽𝟏𝜽𝟐� =�𝟎𝟎� 

 
Ces deux équations accepteront une solution si le déterminant =0 

 �𝒌𝒂
𝟐 + 𝒎𝒈𝒍 −𝒎𝒍² 𝝎² −𝒌𝒂²

−𝒌𝒂² 𝒌𝒂𝟐 + 𝒎𝒈𝒍 −𝒎𝒍² 𝝎²
� = 0 ⟺ �𝒌𝒂𝟐 + 𝒎𝒈𝒍 −𝒎𝒍𝟐 𝝎𝟐�𝟐 − �𝒌𝒂𝟐�𝟐 = 𝟎 

 
�𝒌𝒂𝟐 +𝒎𝒈𝒍 −𝒎𝒍𝟐 𝝎𝟐�𝟐 − �𝒌𝒂𝟐�𝟐 = 𝟎 ⟹ 𝒌𝒂𝟐 + 𝒎𝒈𝒍 −𝒎𝒍𝟐 𝝎𝟐 = �+𝒌𝒂

𝟐

−𝒌𝒂𝟐
� 

⟹ �
𝝎²𝟏 = 𝒈

𝒍
+ 𝟐�𝒌

𝒎
� (𝒂

𝒍
)²

𝝎²𝟐 = 𝒈
𝒍

�tels que : � 𝝎𝟏 : 𝒍𝒂 𝟏è𝒓𝒆 𝒑𝒖𝒍𝒔𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒑𝒓𝒆
𝝎𝟐:  𝒍𝒂 𝟐è𝒎𝒆 𝒑𝒖𝒍𝒔𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒑𝒓𝒆

� 

Remarque 
• Si  𝒂 = 𝟎 ou = 𝟎 , le couplage est nul ⟹𝝎²𝟏 = 𝝎²𝟐 = 𝒈

𝒍
 

• Lorsque le système oscille avec une de ses 02 pulsations on dit que le système oscille dans un de 
ses deux modes. 

 4. Les modes d’oscillations 
 

Le mode c’est l’état dans lequel les éléments dynamiques du système effectuent une oscillation 
harmonique avec la même pulsation qui correspond à une de ses deux pulsations. 

 4.1 Calcul des modes d’oscillations : 
 

Dans chaque mode  les deux masses  effectuent des mouvements harmoniques simples avec la même 
pulsation (𝝎𝟏 𝒐𝒖 𝝎𝟐 ) et les deux pendules  passent par la position d’équilibre au même instant. 
Premier mode : on remplace dans (3) ou (4) par 𝝎²𝟏 = 𝒈

𝒍
+ 𝟐�𝒌

𝒎
� (𝒂

𝒍
)² : 

On obtient après calcul : 𝜽𝟐 = −𝜽𝟏 
Remarque : 

• Dans le premier mode les deux pendules ont la même pulsation ω1 , la même amplitude et un 
déphasage  π . 



CHAPITRE IV                          Oscillations Libres des Systèmes à plusieurs degrés de liberté 2010-2011 
 

Université Ferhat Abbas –Sétif-                     Faculté de technologie                            Tronc Commun ST                      N. AKLOUCHE                                                                         
 

Pa
ge

 5
 

•  Les deux pendules ont des mouvements opposés. 
•  Elongation et compression du ressort chaque période sauf au point du milieu du ressort. 

 
 
 
 
 
 
 

 
 

Deuxième mode :  
on remplace dans (3) ou (4) par 𝝎²𝟐 = 𝒈

𝒍
 : 

On obtient après calcul : 𝜽𝟐 = 𝜽𝟏 
Remarque : 

• Les deux pendules se déplacent dans le même sens.  
• Le ressort ne subit aucune variation de sa longueur. 

 
 
 
 
 
 
 
 
 
 

 5. Calcul des solutions des équations différentielles : 
Chacune des mouvements θ1 et θ2 possède deux composantes harmoniques de pulsations ω1 ou ω2  
Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du 
système. 
La solution générale s’écrit alors comme une combinaison linéaire des deux solutions. 

�
𝜽𝟏(𝒕) = 𝑨𝟏𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏)+𝑩𝟏𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)
𝜽𝟐(𝒕) = 𝑨𝟐𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏)+𝑩𝟐𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)

� 

 
Dans le premier mode : 𝝎 = 𝝎𝟏 ⟹ 𝜽𝟐 = −𝜽𝟏 ⟹ 𝑨𝟏 = −𝑨𝟐 ⟹ 𝑽��⃗ 𝟏� 𝟏−𝟏�,  𝑽��⃗ 𝟏est le 1er vecteur propre 
Dans le deuxième mode : 𝝎 = 𝝎𝟐 ⟹𝜽𝟐 = 𝜽𝟏 ⟹ 𝑩𝟏 = 𝑩𝟐 ⟹ 𝑽��⃗ 𝟐�𝟏𝟏�, 𝑽��⃗ 𝟐est le 2ème vecteur propre 
Donc :  

�
𝜽𝟏(𝒕) = 𝑨𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏) + 𝑩𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)
𝜽𝟐(𝒕) = −𝑨𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏) + 𝑩𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)

� 

 
 6. Calcul des constantes 𝑨,𝑩, 𝝋𝟏 et 𝝋𝟐 

 

  Supposons que :�𝜽𝟏
(𝒕) = 𝜽𝟎, 𝜽̇𝟏(𝒕) = 𝟎

𝜽𝟐(𝒕) = 𝟎, 𝜽̇𝟐(𝒕) = 𝟎 
� 

�
𝜽̇𝟏(𝒕) = 𝑨𝝎𝟏𝒄𝒐𝒔(𝝎𝟏𝒕 + 𝝋𝟏) + 𝑩𝝎𝟐𝒄𝒐𝒔(𝝎𝟐𝒕 + 𝝋𝟐)
𝜽̇𝟐(𝒕) = −𝑨𝝎𝟏𝒄𝒐𝒔(𝝎𝟏𝒕 + 𝝋𝟏) + 𝑩𝝎𝟐𝒄𝒐𝒔(𝝎𝟐𝒕 + 𝝋𝟐)

� 

�𝜽𝟏
(𝟎) = 𝑨𝒔𝒊𝒏(𝝋𝟏) + 𝑩𝒔𝒊𝒏(𝝋𝟐) = 𝜽𝟎

𝜽𝟐(𝟎) = −𝑨𝒔𝒊𝒏(𝝋𝟏) + 𝑩𝒔𝒊𝒏(𝝋𝟐) = 𝟎
�   et �

𝜽̇𝟏(𝟎) = 𝑨𝝎𝟏𝒄𝒐𝒔(𝝋𝟏) + 𝑩𝝎𝟐𝒄𝒐𝒔(𝝋𝟐)
𝜽̇𝟐(𝟎) = −𝑨𝝎𝟏𝒄𝒐𝒔(𝝋𝟏) + 𝑩𝝎𝟐𝒄𝒐𝒔(𝝋𝟐)

� 

 

𝜽𝟐 = 𝜽𝟏 

𝜽𝟐 = −𝜽𝟏 
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⟹ �
𝝋𝟏 = 𝝋𝟐 = ±

𝝅
𝟐

𝑨 = 𝑩 =
𝜽𝟎
𝟐

� 

Donc : �
𝜽𝟏(𝒕) = 𝜽𝟎

𝟐
�𝒔𝒊𝒏 �𝝎𝟏𝒕 + 𝝅

𝟐
� + 𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝅

𝟐
)�

𝜽𝟐(𝒕) = 𝜽𝟎
𝟐
�−𝒔𝒊𝒏 �𝝎𝟏𝒕 + 𝝅

𝟐
� + 𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝅

𝟐
)�
� 

 

�
𝜽𝟏(𝒕) = 𝜽𝟎𝒄𝒐𝒔 �

𝝎𝟐 − 𝝎𝟏

𝟐
� 𝒕 + 𝒄𝒐𝒔 �

𝝎𝟐 + 𝝎𝟏

𝟐
� 𝒕

𝜽𝟐(𝒕) = −𝜽𝟎𝒔𝒊𝒏 �
𝝎𝟐 − 𝝎𝟏

𝟐
� 𝒕 + 𝒔𝒊𝒏 �

𝝎𝟐 + 𝝎𝟏

𝟐
� 𝒕
� 

 7. Phénomène de battement : 
Lorsque le couplage est faible (k faible), les pulsations propres des 2 oscillateurs (𝜔1 𝑒𝑡 𝜔2) sont voisines 
(𝝎𝟏 ≈ 𝝎𝟐 ⟹ ∆𝝎 = 𝝎𝟐 − 𝝎𝟏 𝑒𝑠𝑡 𝑓𝑎𝑖𝑏𝑙𝑒), il se produit un phénomène de battement. Les 2 oscillateurs 
se  transmettent de l’énergie entre eux et vibres avec une pulsation 𝜔 égal à la moyenne des deux 
pulsations propres 𝝎 = 𝟏

𝟐
(𝝎𝟐 + 𝝎𝟏)  avec une période égale à  𝑻 = 𝟐𝝅

𝝎 = 𝟒𝝅
𝝎𝟐+𝝎𝟏

Tandis que la pulsation 

du battement est égale à  𝝎𝑩 = 𝟏
𝟐

(𝝎𝟐 −𝝎𝟏) , avec une période 𝑻𝑩 = 𝟒𝝅
𝝎𝟐−𝝎𝟏

 

 

 

 

 

 

 

 

IV.1 .3.2  Pendules couplés : (Couplage inertiel) 

Considérons deux pendules qui sont couplés par une masse 𝑚1 qui  
se trouve à une distance 𝑙1 de l'axe de rotation. 
 
 1. Equations différentielles du mouvement :  

 Les coordonnées des éléments du système : 
La masse 𝑚1 se trouve à une distance 𝑙1 de O. 

 𝒎𝟏  �
𝑥𝑚1 = 𝑙1. 𝑠𝑖𝑛 𝜃 1
𝑦𝑚1 = −𝑙1. 𝑐𝑜𝑠 𝜃 1

� ⟹ �
𝑥̇𝑚1 = 𝑙1𝜃̇1𝑐𝑜𝑠 𝜃 1
𝑦̇𝑚1 =  𝑙1𝜃1̇ sin𝜃 1

� ⟹ 𝑣²𝑚1 = 𝑙1²𝜃² 1 

La masse 𝑚2 se trouve à une distance (𝑙1 + 𝑙2) de O. 

𝒎𝟐  �
𝑥𝑚2 = 𝑙1. 𝑠𝑖𝑛 𝜃 1 + 𝑙2. 𝑠𝑖𝑛 𝜃 2
𝑦𝑚2 = −𝑙1. 𝑐𝑜𝑠 𝜃 1 − 𝑙2. 𝑐𝑜𝑠 𝜃 2

� ⟹ �
𝑥̇𝑚2 = 𝑙1𝜃̇1𝑐𝑜𝑠 𝜃 1 + 𝑙2𝜃̇1𝑐𝑜𝑠 𝜃 2
𝑦̇𝑚2 = 𝑙1𝜃̇1 sin𝜃 1 +  𝑙2𝜃̇2 sin 𝜃 2

� 

Calcul de 𝒗𝑚2 

𝒗²𝑚2 = �𝑙1𝜃1̇𝑐𝑜𝑠 𝜃 1 + 𝑙2𝜃2̇𝑐𝑜𝑠 𝜃 2�
2

+ (𝑙1𝜃1̇ sin 𝜃 1 +  𝑙2𝜃2̇ sin𝜃 2)² 

𝒗²𝑚2 = 𝑙²1𝜃̇12 + 𝑙²2𝜃̇22 + 2𝑙1𝜃1̇𝑐𝑜𝑠 𝜃 1. 𝑙2𝜃2̇𝑐𝑜𝑠 𝜃 2 + 2𝑙1𝜃1̇ sin𝜃 1 . 𝑙2𝜃2̇ sin𝜃 2 

x 
y 

O 

𝜃1 𝑙1 

𝑚1 

𝜃2 
𝑙2 

𝑚2 

𝜽𝟏 

𝜽𝟐 

𝑻𝑩 =
𝟒𝝅

𝝎𝟐 + 𝝎𝟏
 

𝑻 =
𝟒𝝅

𝝎𝟐 − 𝝎𝟏
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𝒗²𝑚2 = 𝑙²1𝜃̇12 + 𝑙²2𝜃̇22 + 2𝑙1𝜃1̇𝑙2𝜃2̇(𝑐𝑜𝑠 𝜃 1𝑐𝑜𝑠 𝜃 2 + sin𝜃 1 sin𝜃 2) 

Or : 𝑐𝑜𝑠 (𝜃 1 −  𝜃 2) = 𝑐𝑜𝑠 𝜃 1𝑐𝑜𝑠 𝜃 2 + sin𝜃 1 sin𝜃 2) ⟹𝒗²𝑚2 = 𝑙²1𝜃̇12 + 𝑙²2𝜃̇22 + 2𝑙1𝜃1̇𝑙2𝜃2̇𝑐𝑜𝑠 (𝜃 1 −  𝜃 2) 

Dans le cas des faibles oscillations, les angles sont très petits on a : {𝑐𝑜𝑠 (𝜃 1 −  𝜃 2) ≈ 1 � 
Donc : 𝒗²𝑚2 = 𝑙²1𝜃̇12 + 𝑙²2𝜃̇22 + 2𝑙1𝑙2𝜃1̇ 𝜃2̇ = (𝑙1𝜃1̇ + 𝑙2𝜃2̇)² 

 L’énergie cinétique du système : 𝑻 = 𝑻𝒎𝟏 + 𝑻𝒎𝟐 =  𝟏
𝟐
𝒎𝒗𝒎𝟏

𝟐 + 𝟏
𝟐
𝒎𝒗𝒎𝟐

𝟐 

 𝑇𝒎𝟏 =  1
2
𝒎𝟏(𝑥̇𝑚1 + 𝑦̇𝑚1)2 =  1

2
𝑚1𝑙1

2𝜃̇12(cos𝜃12 + sin𝜃12) 

                       ⟹  𝑻𝒎𝟏 =  𝟏
𝟐
𝒎𝟏𝒍²𝟏𝜽̇𝟏𝟐 

 𝑇𝒎𝟐 =  1
2
𝒎𝟐𝒗²𝑚2 =  1

2
𝑚2(𝑙1𝜃1̇ + 𝑙2𝜃2̇)² 

                       ⟹ 𝑻 = 𝟏
𝟐
𝒎𝟏𝒍𝟐𝟏𝜽̇𝟏𝟐 + 𝟏

𝟐
𝒎𝟐�𝒍𝟏𝜽𝟏̇ + 𝒍𝟐𝜽𝟐̇�

𝟐
 

 L’énergie potentielle du système : 𝑼 = 𝑼𝒎𝟏+𝑼𝒎𝟐 
Si on choisi comme origine des énergies potentielles l’axe  (𝑶𝒙)  on a pour les deux masses : 
𝑼𝒎𝟏+𝑼𝒎𝟐 = −𝒎𝟏𝒈𝒍𝟏. 𝐜𝐨𝐬 𝜽𝟏−𝒎𝟐𝒈(𝒍𝟏. 𝐜𝐨𝐬 𝜽𝟏 + 𝒍𝟐. 𝐜𝐨𝐬𝜽𝟐) 
(Le signe moins vient du fait que la masse m est inférieur à l’axe choisi). 

𝑼 = −𝒈𝒍𝟏(𝒎𝟏 + 𝒎𝟐) 𝐜𝐨𝐬𝜽𝟏−𝒎𝟐𝒈𝒍𝟐. 𝐜𝐨𝐬𝜽𝟐 
 La fonction de Lagrange sera donc : 

 𝑳 = 𝑻 − 𝑼 = 𝟏
𝟐𝒎𝟏𝒍²𝟏𝜽̇𝟏

𝟐 + 𝟏
𝟐𝒎𝟐�𝒍𝟏𝜽𝟏̇ + 𝒍𝟐𝜽𝟐̇�

𝟐+ 𝒈𝒍𝟏(𝒎𝟏 +𝒎𝟐) 𝐜𝐨𝐬𝜽𝟏+𝒎𝟐𝒈𝒍𝟐. 𝐜𝐨𝐬𝜽𝟐 
 

On remarque bien deux coordonnées généralisées qui décrit le mouvement donc on aura deux équations 
de Lagrange : 

⎩
⎪
⎨

⎪
⎧ d

dt
�
∂𝐿
∂𝜃1̇

� − �
∂𝐿
∂𝜃1

� = 0

d
dt
�
∂𝐿
∂𝜃2̇

� − �
∂𝐿
∂𝜃2

� = 0

� 

⎩
⎪
⎨

⎪
⎧d

dt�
∂𝐿
∂𝜃1̇

� = 𝒎𝟏𝒍𝟐𝟏𝜽̈𝟏 + 𝒎𝟐𝒍𝟏(𝒍𝟏𝜽̈𝟏 + 𝒍𝟐𝜽̈𝟐)

�
∂𝐿
∂𝜃1

� = −𝒈𝒍𝟏(𝒎𝟏 + 𝒎𝟐) 𝐬𝐢𝐧𝜽𝟏

� ⟹ 𝒎𝟏𝒍𝟐𝟏𝜽̈𝟏 + 𝒎𝟐𝒍𝟐𝟏𝜽̈𝟏 + 𝒎𝟐𝒍𝟏𝒍𝟐𝜽̈𝟐 + 𝒈𝒍𝟏(𝒎𝟏 + 𝒎𝟐)𝜽𝟏 = 0 

⟹ (𝒎𝟏+𝒎𝟐)𝒍𝟏𝟐𝜽̈𝟏 + 𝒈𝒍𝟏(𝒎𝟏 + 𝒎𝟐)𝜽𝟏 = −𝒎𝟐𝒍𝟏𝒍𝟐𝜽̈𝟐 

On divise sur (𝒎𝟏+𝒎𝟐)𝒍𝟏 et on trouve : 𝒍𝟏𝜽̈𝟏 + 𝒈𝜽𝟏 = − 𝒎𝟐𝒍𝟐
(𝒎𝟏+𝒎𝟐)𝒍𝟏

𝜽̈𝟐 

⎩
⎪
⎨

⎪
⎧d

dt �
∂𝐿
∂𝜃2̇

� = 𝒎𝟐𝒍𝟐(𝒍𝟏𝜽̈𝟏 + 𝒍𝟐𝜽̈𝟐)

�
∂𝐿
∂𝜃2

� = −𝒎𝟐𝒈𝒍𝟐. 𝐬𝐢𝐧𝜽𝟐

� ⟹ 𝒎𝟐𝒍𝟐�𝒍𝟏𝜽̈𝟏 + 𝒍𝟐𝜽̈𝟐� + 𝒎𝟐𝒈𝒍𝟐.𝜽𝟐 = 0 

⟹𝒎𝟐𝒍𝟐𝟐𝜽̈𝟐 + 𝒎𝟐𝒈𝒍𝟐.𝜽𝟐 = −𝒎𝟐𝒍𝟐𝒍𝟏𝜽̈𝟏 

On divise sur 𝒎𝟐𝒍𝟐 et on trouve : 𝒍𝟐𝜽̈𝟐 + 𝒈𝜽𝟐 = −𝒍𝟏𝜽̈𝟏 

Donc les 02 équations différentielles du mouvement sont :�
𝒍𝟏𝜽̈𝟏 + 𝒈𝜽𝟏 = − 𝒎𝟐𝒍𝟐

(𝒎𝟏+𝒎𝟐)𝒍𝟏
𝜽̈𝟐 … … . (𝟏)

𝒍𝟐𝜽̈𝟐 +𝒈𝜽𝟐 = −𝒍𝟏𝜽̈𝟏 … … … … … (𝟐)
� 

 2. On fait l’hypothèse que le système admet des solutions harmoniques : 

Donc :  𝜽𝟏(𝒕) = 𝑨𝟏𝒔𝒊𝒏(𝝎𝒕 + 𝝋) et 𝜽𝟐(𝒕) = 𝑨𝟐𝒔𝒊𝒏(𝝎𝒕 + 𝝋′) 
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Tels que : 𝑨𝟏, 𝑨𝟐, 𝝋 et 𝝋′, 𝝎 est l’une des pulsations propres du système. 

�𝜽𝟏
(𝒕) = 𝑨𝟏𝒔𝒊𝒏(𝝎𝒕 + 𝝋) ⟹ 𝜽̈𝟏 = −𝝎²𝜽𝟏

𝜽𝟐(𝒕) = 𝑨𝟐𝒔𝒊𝒏(𝝎𝒕 + 𝝋′) ⟹ 𝜽̈𝟐 = −𝝎²𝜽𝟐
� 

On remplace dans les équations (1) et (2) donc : 

�
(𝒈 − 𝒍𝟏𝝎²)𝜽𝟏 −

𝒎𝟐𝒍𝟐
(𝒎𝟏+𝒎𝟐)𝒍𝟏

𝝎²𝜽𝟐 = 𝟎… … . (𝟑)

�𝒈 − 𝒍𝟐𝝎
𝟐�𝜽𝟐 − 𝒍𝟏𝝎²𝜽𝟏 = 𝟎… … … … … (𝟒)

�  

 3. Calcul des pulsations propres : On suppose que 𝒎𝟏 = 𝒎𝟐 = 𝒎, 𝒍𝟏 = 𝒍𝟐 = 𝒍 

� (𝒈 − 𝒍𝝎²)𝜽𝟏 −
𝒍
𝟐
𝝎²𝜽𝟐 = 𝟎… … . (𝟒)

�𝒈 − 𝒍𝝎𝟐�𝜽𝟐 − 𝒍𝝎²𝜽 = 𝟎… … … … … (𝟓)
� 

 

�𝒈 − 𝒍𝝎² − 𝒍𝝎𝟐

𝟐
−𝒍𝝎² 𝒈 − 𝒍𝝎²

� �𝜽𝟏𝜽𝟐� =�𝟎𝟎� 

 
Ces deux équations accepteront une solution si le déterminant =0 

 �𝒈 − 𝒍𝝎² − 𝒍𝝎𝟐

𝟐
−𝒍𝝎² 𝒈 − 𝒍𝝎²

� = 0 ⟺ �𝒈 − 𝒍𝝎²�𝟐 − 𝟏
𝟐
�𝒍𝝎²�

𝟐
= 𝟎 ; C’est l’équation aux valeurs propres.                                           

𝝎𝒊 𝒗𝒂𝒍𝒆𝒖𝒓𝒔 𝒑𝒓𝒐𝒑𝒓𝒆𝒔. 

�𝒈 − 𝒍𝝎²�𝟐 −
𝟏
𝟐 �
𝒍𝝎²�

𝟐
= 𝟎 ⟹𝒈− 𝒍𝝎² =

⎩
⎨

⎧+
𝟏
√𝟐

𝒍𝝎²

−
𝟏
√𝟐

𝒍𝝎²
� 

⟹ �
𝝎²𝟏 = 𝒈

𝒍(𝟏+ 𝟏
√𝟐

)

𝝎²𝟐 = 𝒈
𝒍(𝟏− 𝟏

√𝟐
)

�               Ce sont les valeurs propres. 

 3.Calcul des modes d’oscillations ou les vecteurs propres : 
 

Premier mode : on remplace dans (5) ou (6) par 𝝎²𝟏 = 𝒈
𝒍(𝟏+ 𝟏

√𝟐
)
 

⎩
⎪
⎨

⎪
⎧

(𝒈 − 𝒍(
𝒈

𝒍(𝟏+ 𝟏
√𝟐

)
)𝜽𝟏 −

𝒍( 𝒈
𝒍(𝟏+ 𝟏

√𝟐
)
)

𝟐
𝜽𝟐 = 𝟎

� 

(1- 𝟏
𝟏+ 𝟏

√𝟐

) 𝜽𝟏 = 𝟏
𝟐(𝟏+ 𝟏

√𝟐
)
𝜽𝟐 ⟹ 𝜽𝟐 = √𝟐 𝜽𝟏: c’est le premier mode 

Deuxième mode : on remplace dans (5) ou (6) par 𝝎²𝟐 = 𝒈
𝒍(𝟏− 𝟏

√𝟐
)
 

On trouve : 𝜽𝟐 = −√𝟐 𝜽𝟏: c’est le deuxième mode. 
 4. Calcul des solutions des équations différentielles : 

 
Chacune des mouvements θ1 et θ2 possède deux composantes harmoniques de pulsations ω1 ou ω2 . 
Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du 
système. 
La solution générale s’écrit alors comme une combinaison linéaire des deux solutions. 

�
𝜽𝟏(𝒕) = 𝑨√𝟐𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏) + 𝑩√𝟐𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)
𝜽𝟐(𝒕) = 𝑨√𝟐𝒔𝒊𝒏(𝝎𝟏𝒕 + 𝝋𝟏) − 𝑩√𝟐𝒔𝒊𝒏(𝝎𝟐𝒕 + 𝝋𝟐)

� 
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IV.1 .4 Généralisation aux systèmes à n degrés de liberté : Principe des opérateurs 

IV.1 .4.1 Energie cinétique généralisée (Opérateur associé à l’énergie cinétique) 

Un système à n degrés de liberté possède n variables : 𝒙𝟏,𝒙𝟐, 𝒙𝟑, … …𝒙𝒏 . 
L’énergie cinétique généralisée ; T= 1

2
𝑚1𝑥̇12 + 1

2
𝑚2𝑥̇22 + ⋯1

2
𝑚𝑛𝑥̇𝑛2  

Si 𝑚1 = 𝑚2 = ⋯𝑚𝑛 = 𝑚⟹ T = 1
2
𝑚(𝑥̇12 + 𝑥̇22 + ⋯𝑥̇𝑛2) ⟹ 𝐓 = 𝟏

𝟐
𝒎∑ 𝒙̇𝒊𝟐𝒏

𝒊=𝟏 … … … … … … . (1) 

Soit le vecteur vertical (colonne) : | �𝒙〉 = � �
𝒙𝟏
𝒙𝟐....
𝒙𝒏

�  KET 

Soit le vecteur horizontal (ligne) :〈�𝒙| = (𝒙𝟏, � 𝒙𝟐, …𝒙𝒏) BRAS 

⟨𝒙|𝒙⟩ = ( 𝒙𝟏,𝒙𝟐, …𝒙𝒏)�
𝒙𝟏
𝒙𝟐....
𝒙𝒏

� = ∑ 𝒙𝒊𝟐𝒏
𝒊=𝟏 ⟺ ⟨𝒙̇|𝒙̇⟩ = ( 𝒙̇𝟏, 𝒙̇𝟐, … 𝒙̇𝒏)�

𝒙̇𝟏
𝒙̇𝟐....
𝒙̇𝒏

� = ∑ 𝒙̇𝒊𝟐𝒏
𝒊=𝟏 ⟹ 𝐓 = 𝟏

𝟐
𝒎⟨𝒙̇|𝒙̇⟩ 

⟹ 𝐓 = 𝟏
𝟐

(𝒙̇𝟏, 𝒙̇𝟐, 𝒙̇𝟑, … … 𝒙̇𝒏)

⎝

⎜
⎛
𝒎
𝟎
𝟎

𝟎
𝒎
𝟎

𝟎
𝟎
𝒎

… . .
… . .
… . .

𝟎
𝟎
𝟎

. . 𝟎
𝟎 𝟎 𝟎 … … 𝒎⎠

⎟
⎞
�

𝒙̇𝟏
𝒙̇𝟐
𝒙̇𝟑...
𝒙̇𝒏

� ⟹ 𝐓 = 𝟏
𝟐
⟨𝒙̇|𝓣|𝒙̇⟩  

𝓣 : Matrice carrée (nxn), Opérateur associé à T. Les éléments de  𝝉 sont déduits des dérivées 𝝏𝑻
𝝏𝒙̇𝒊

 

IV.1 .4.2 Energie potentielle généralisée (Opérateur associé à l’énergie potentielle) 

T= 1
2
𝑘1𝑥12 + 1

2
𝑘2𝑥22 + ⋯1

2
𝑘𝑛𝑥𝑛2 .  

Si 𝑘1 = 𝑘2 = ⋯𝑘𝑛 = 𝑘 ⟹ U = 1
2
𝑘(𝑥12 + 𝑥22 + ⋯𝑥𝑛2) ⟹𝐔 = 𝟏

𝟐
𝒌∑ 𝒙𝒊𝟐𝒏

𝒊=𝟏 … … … … … … . (2) 

𝐔 = 𝟏
𝟐
𝒌⟨𝒙|𝒙⟩ ⟹ 𝐔 = 𝟏

𝟐
⟨𝒙|𝓤|𝒙⟩ . Tel que :  𝓤 =

⎝

⎜
⎛
𝒌
𝟎
𝟎

𝟎
𝒌
𝟎

𝟎
𝟎
𝒌

… . .
… . .
… . .

𝟎
𝟎
𝟎

. . 𝟎
𝟎 𝟎 𝟎 … … 𝒌⎠

⎟
⎞  

𝓤 : Matrice carrée (nxn), Opérateur associé à 𝑼. Les éléments de  𝓤 sont déduits des dérivées 𝝏𝑼
𝝏𝒙𝒊

 

IV.1 .4.3  Equation différentielle 

Le Lagrangien (la fonction de Lagrange) : 𝑳 = 𝑻 − 𝑼 = 𝟏
𝟐
⟨𝒙̇|𝓣|𝒙̇⟩ − 𝟏

𝟐
⟨𝒙|𝓤|𝒙⟩ 

Equation de Lagrange : d
dt
� ∂𝐿
∂𝑥𝚤̇
� − �∂𝐿

∂𝑥𝑖
� = 0 

⎩
⎨

⎧
∂𝐿
∂𝑥𝚤̇

=
1
2
∂
∂𝑥𝚤̇

⟨𝒙̇|𝓣|𝒙̇⟩

∂𝐿
∂𝑥𝑖

= −
1
2
∂
∂𝑥𝑖

⟨𝒙|𝓤|𝒙⟩
� 

On a : ∂
∂𝑥𝚤̇

⟨𝒙̇|𝓣|𝒙̇⟩ = 𝟐⟨𝑰𝒊|𝓣|𝒙̇⟩ et ∂
∂𝑥𝑖

⟨𝒙|𝓤|𝒙⟩ = 𝟐⟨𝑰𝒊|𝓤|𝒙̇⟩ avec 𝑰𝒊 vecteur unité. 

〈�𝐼1| � = (1,0,0,0, … .0), 〈�𝐼2| � = (0,1,0,0, … .0), … … … … . . 〈�𝐼𝑛| � = (0,0,0,0, … .1). 

 
∂𝐿
∂𝑥𝒊̇

= ⟨𝑰𝒊|𝓣|𝒙̇⟩ ⟹
d
dt
�
∂𝐿
∂𝑥𝚤̇

� =  ⟨𝑰𝒊|𝓣|𝒙̈⟩ 
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Pa
ge

 1
0 

∂𝐿
∂𝒙i

= −⟨𝑰𝒊|𝓤|𝒙⟩ ⟹  ⟨𝑰𝒊|𝓣|𝒙̈⟩ + ⟨𝑰𝒊|𝓤|𝒙⟩ = 𝟎,  c’est l’équation de Lagrange. 

⟹𝓣�|𝒙̈�〉 + 𝓤�|𝒙�〉 = 𝟎 ⟹ �|𝒙̈�〉 + 𝓣−𝟏�|𝒙�〉 = 𝟎 ⟹
𝒅²
𝒅𝒕²

�|𝒙�〉 + 𝓛�|𝒙�〉 = 𝟎 

𝓛 = 𝓣−𝟏.𝓤 : Opérateur associé au Lagrangien L,  𝓣−𝟏 : Matrice inverse de 𝓣 . 

IV.1 .4.4  Equation  aux valeurs propres : 

La solution de l’équation  𝒅²
𝒅𝒕²
�|𝒙�〉 + 𝓛�|𝒙�〉 = 𝟎 peut être sous la forme complexe : 𝑪𝒆𝒋𝝎𝒕 

𝒅² �|𝒙�〉
𝒅𝒕²

= −𝝎² �|𝒙�〉 ⟹ −𝝎² �|𝒙�〉 + 𝓛�|𝒙�〉 = 𝟎 ⟹ (𝓛 −𝝎𝟐) �|𝒙�〉 = 𝟎  ,  

(𝓛 −𝝎2)�|𝒙�〉 = 𝟎 ⟹ 𝑫𝒆𝒕 [𝓛 −𝝎2𝑰] = 𝟎, 𝑐’𝑒𝑠𝑡 𝑙’é𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑢𝑥 𝑣𝑎𝑙𝑒𝑢𝑟𝑠 𝑝𝑟𝑜𝑝𝑟𝑒𝑠.𝜔𝑖 : 𝑣𝑎𝑙𝑒𝑢𝑟𝑠 𝑝𝑟𝑜𝑝𝑟𝑒𝑠. 
 valeurs propres : 

Exemple : 𝓛 = �𝑳𝟏𝟏 𝑳𝟏𝟐
𝑳𝟐𝟏 𝑳𝟐𝟐

� , 

L’équation aux valeurs propres : 𝓛 −𝝎𝟐𝑰= �𝑳𝟏𝟏 𝑳𝟏𝟐
𝑳𝟐𝟏 𝑳𝟐𝟐

� − 𝝎𝟐 �𝟏 𝟎
𝟎 𝟏� = �𝑳𝟏𝟏 − 𝝎𝟐 𝑳𝟏𝟐

𝑳𝟐𝟏 𝑳𝟐𝟐 − 𝝎𝟐� 

�𝑳𝟏𝟏 − 𝝎𝟐 𝑳𝟏𝟐
𝑳𝟐𝟏 𝑳𝟐𝟐 − 𝝎𝟐� = 0 ⟹ (𝑳𝟏𝟏 − 𝝎𝟐)(𝑳𝟐𝟐 − 𝝎𝟐) − 𝑳𝟏𝟐.𝑳𝟐𝟏 = 𝟎 

A chaque valeur propre 𝜔𝑖 correspond un vecteur propre  𝑉𝚤��⃗  , 𝜔1 ↣ 𝑉1���⃗ �𝒙𝟏𝟏𝒙𝟏𝟐
�, 𝜔2 ↣ 𝑉2���⃗ �𝒙𝟐𝟏𝒙𝟐𝟐

� 

 Pour  : 𝛚 = 𝝎𝟏 : (𝓛 − 𝜔1
2) 𝑉1���⃗ = 0 ⟹ �𝑳𝟏𝟏 − 𝝎𝟏

𝟐 𝑳𝟏𝟐
𝑳𝟐𝟏 𝑳𝟐𝟐 − 𝝎𝟏

𝟐� �
𝒙𝟏𝟏
𝒙𝟏𝟐
� = �𝟎𝟎� 

⟹ �
(𝑳𝟏𝟏 − 𝝎𝟏

𝟐)𝒙𝟏𝟏 + 𝑳𝟏𝟐𝒙𝟏𝟐 = 𝟎
𝑳𝟐𝟏𝒙𝟏𝟏 − (𝑳𝟐𝟐 − 𝝎𝟏

𝟐)𝒙𝟏𝟐 = 𝟎
� ⟹ 𝒙𝟏𝟏 𝒆𝒕 𝒙𝟏𝟐? 

 Pour  : 𝛚 = 𝝎𝟐 : (𝓛 − 𝜔2
2) 𝑉2���⃗ = 0 ⟹ �𝑳𝟏𝟏 − 𝝎𝟐

𝟐 𝑳𝟏𝟐
𝑳𝟐𝟏 𝑳𝟐𝟐 − 𝝎𝟐

𝟐� �
𝒙𝟐𝟏
𝒙𝟐𝟐
� = �𝟎𝟎� 

⟹ 𝒙𝟐𝟏 𝒆𝒕 𝒙𝟐𝟐? 
IV.1 .4.5 Solution des équations  différentielle : 
�𝒙𝟏(𝒕)
𝒙𝟐(𝒕)�=A 𝑉1���⃗ 𝑒𝑗(𝜔1𝑡+𝜑1) + 𝐵𝑉2���⃗ 𝑒𝑗(𝜔2𝑡+𝜑2) = A �𝒙𝟏𝟏𝒙𝟏𝟐

� 𝑒𝑗(𝜔1𝑡+𝜑1) + 𝐵 �𝒙𝟐𝟏𝒙𝟐𝟐
� 𝑒𝑗(𝜔2𝑡+𝜑2) 

�
𝒙𝟏(𝒕) = 𝑨𝒙𝟏𝟏𝑒𝑗(𝜔1𝑡+𝜑1) + 𝐵𝒙𝟐𝟏𝑒𝑗(𝜔2𝑡+𝜑2)

𝒙𝟐(𝒕) = 𝑨𝒙𝟏𝟐𝑒𝑗(𝜔1𝑡+𝜑1) + 𝐵𝒙𝟐𝟐𝑒𝑗(𝜔2𝑡+𝜑2)
� 
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