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Introduction générale

Les phénomenes vibratoires jouent un role déterminant dans presque toutes les
branches de la physique: mécanique, électricité, optique, acoustique, etc. Malgré
leur grande diversité, ils sont régis, en tout cas dans le domaine linéaire, par les
mémes lois de comportement et peuvent étre étudiés au moyen du méme outil
mathématique. L'homme s'est intéressé aux phénomenes vibratoires lorsqu'il a
construit les instruments de musiques.

Malgré les connaissances acquises par les anciens, il faut attendre le début du
17e siecle pour que Galilée (1564-1642) démontre que le ton d'un son est
déterminé par la fréquence des vibrations.

Treés longtemps, on a étudié les vibrations des machines et des structures presque
uniguement dans le but de les atténuer et, si possible, de les supprimer. Cette
preoccupation est encore essentielle mais n’est pas la seule. On construit
actuellement de plus en plus de machines ou d’appareils qui utilisent les
vibrations mécaniques pour remplir la fonction désirée. Les vibrations sont
parfois perturbatrices et doivent étre combattues dans plusieurs domaines par
exemple :

- Les machines ou certains organes de machine sont une cause
d’imprécision, de bruit, d’usure prématurée et de fissure, entrainant
finalement la rupture de la piece.

- Les vibrations des voitures, des avions, des trains ou des bateaux
provoquent, en plus des inconvénients précédents, I’inconfort des
voyageurs et diminuent parfois la sécurité de conduite de ces véhicules.

- Les vibrations des grandes structures metalliques peuvent prendre, dans
certains cas, des proportions catastrophiques.

Dans ces chapitres, nous allons étudier le comportement des systéemes avec un ou
plusieurs degrés de liberté. Nous allons nous limiter a des systéemes ou les
équations de mouvement sont des équations différentielles linéaires. Ce qui nous
permet de décrire de diverses caractéristiques importantes de vibrations. Vous
apprendrez a analyser les vibrations libres et forcées avec ou sans
amortissement.
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CHAPITRE I
Oscillations libres non amorties : Systeme a un degreé de liberté

1.1 Généralités sur les vibrations
I.1.1 Mouvement périodique :
Définition : C'est un mouvement qui se répéte aintervalles de temps réguliers, cet intervalle est appelé
période (T) qui S exprime en seconde (S).
Pour les mouvements rapides, on utilise lafréquence : f exprimée en Hertz (HZ)

1.1.2 Mouvement vibratoire :
Définition : Un mouvement vibratoire est un mouvement périodique se produisant de part est
d'autre d'une position déquilibre. On peut aussi définir un mouvement vibratoire par sa
fréguence f. La fréquence indique le nombre d oscillations complétes (dans le sens aller retour)
Se produisant par seconde.
On peut établir larelation entre la fréquence et la période :

1

1
T—; et f—;

La péiode T des oscillations est le temps mis par le systéeme pour revenir a une
position identique quelque soit le choix de cette position. Cest auss, le temps mis
pour faire une oscillation compléte ou un « aler-retour ».

Mathématiquement, le mouvement périodique de période T est défini par:

A tout instant t, x(t+T) =x(t)

1.1.3 Mouvement vibratoire libre

Définition : les vibrations libres sont les vibrations qui résultent lorsqu’ on écarte un systéme de sa position
d équilibre ou on lui donne une vitesse initiale, puison le laisse vibrer librement.

Exemples : Une masse accrochée aun ressort - un pendule simple - le balancier d une horloge - larotation
d’un moteur tournant a vitesse constante..... etc.

I.1.4 Mouvement vibratoire sinusoidal
Définition : un mouvement vibratoire est sinusoidal, si un point vibrant possede une élongation du type :
y(t) = Asin (wt + @)
> Lagrandeur y(t) est appeléel’ élongation (ou la position) (1)
al’instant t, I’élongation maximale ou I’ amplitude du
mouvement, elle varie entre —A et +A. j'_ T _"
» Laquantité w est la pulsation du mouvement et exprimeée
en (744 /5 ). ()
» Laquantité (wt + ¢) est la phase instantanée, exprimeée en A
(radian, sans dimension),
> I'angle ¢ est laphaseinitiale, correspond alaphaseal’instantt = 0.
1.2 Vibration harmonique
Définition : On appelle vibration harmonique tout systéme dont le parametre x(t) qui la caractérise est une
fonction sinusoidale du temps : x(t) = A cos (wt + @)
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» La fonction cosinus est une fonction périodique de période2m. Si T est la période temporelle du
mouvement, on aura donc :
[w(t+T)+ @] —[wt+¢] =21 = 0T =21

o . . _ 2
On en déduit I’ expression de T en fonction de la pulsation : T = f

» Lafréguencef, nombre d’ oscillations par seconde correspond a I'inversede lapériodeT : f= 1/T.
Il existe d" autres expressions équiva entes pour lafonction x(t). En effet, la fonction sinus est équivalente &
lafonction cosinus décalée de /2. On peut donc écrire :

x = Acos(wt + @) = Asin(wt + @)

Donc :
Les grandeurs caractéristiques d’ une vibration harmonique sont :

- L’amplitude A,

- LapériodeT, w = 2?” = 2nf ; w: pulsation, f: fréquence.

- Laphase ¢.

1.2.1 Coordonnées généralisées d’un systeme physigue
Définition : Les coordonnées Généralisées sont |I’ensemble de variables réelles indépendantes ou liées

permettant de décrire et configurer tous les é éments du systeme atout instant t.
Par exemples :
> un point matériel libre dans |’ espace peut étre déterminé par 3 coordonnées genéralisées (X, Y, 2);
» un corps solide peut étre déterminé par 6 coord. génér. : f_
e 03 coordonnées relatives au centre de gravité, b P,
e 03 coordonnées liées aux angles d’ Euler (¢, ), 8). ®
» Les coordonnées généralisées d’ un systéme de P points )
matériels et Q corps solides sont défini par : N = 3P + 6Q / =W

On note : 0 )& =

L es coordonnées généralisées : q;(t), q2(t), .. wuv oo gy (0). O [

Lesvitesses généralisées: 1 (t), 42 (b), e o oon. Gy (2). A R

u 0

1.2.2 Degré de liberté
Définition : Le degré de liberté est le nombre de coordonnées généralisées indépendantes, nécessaires pour

configurer tous les éléments du systeme atoutinstant: d = N

Ou, le nombre de coordonnées généralisees liées, pour configurer tous les ééments du systeme a tout instant
moins (-) le nombre de relations reliant ces coordonnéesentreelles: d = N —r

d: Degrédeliberté;

N : Nombre de coordonnées généralisées

1 : Nombre de relations reliant ces coordonnées entre elles.

Exemples :

= Undisquede massem et derayonr, roule sans glisser sur un plan horizontal.
Ici on adeux coordonnées géneraliseesx et 6 donc N = 2. 9
x et 6 sontliéesavec unerelation: x =rfdonc:r=1.
Lenombrededegrésdeliberté d =N —r = 1.
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= Un systeme mécanique constitué de 02 points matériels M; et M, reliés d’ une tige de longueur |.

M;(x1,y1,21) : 3 S N=6 |
M5(x5,V5,2,) : 3 =
2(X2,Y2,27) ® ®

L’équation deliaison: [ =/ (x; —x,) 2+ (y1 —y2)%2 + (2, —7,)2 =c° My M,
=r=1=d=5
1.3 Equation différentielle du mouvement

Dans ce cours, on établi I’équation différentielle en utilisant le formalisme de Lagrange. L’intégration de
cette derniére permet de donner |’ équation du mouvement.

1.3.1 Formalisme de Lagrange

Ce formalisme repose sur la fonction de Lagrange(L = T — U). L’ensemble d'équations du mouvement

S écrit :
n {i (G_L) _ (ﬂ)} =0
=1 ldt \ag; da;
L : Fonction de Lagrange ou Lagrangien
T : L’ énergie cinétique du systéme;
U : L’ énergie potentielle du systéme ;
q; . est lacoordonnée généralisée et g; est la vitesse genéralisée du systeme.

Pour un systéme aun degré de liberté, (N= 1 ou ddl=1) |’ éguation du mouvement s écrit :

d (BL) <6L) 5
dt\oq dq -

Remarques :

e Pour un mouvement unidimensionnel x, |’équation de Lagrange s écrit :
d (oL oL
aier) (52 =0
e Pour un mouvement rotationnel 6, |’ équation de Lagrange s écrit :
d (o
1()-C)=o
dt \aé 20

kx
1.3.2 Exemples d’oscillateurs harmoniques | -— x, I
m

k

Exemple 1 : Pendule élastique vertical —
Un pendule é astique est constitué d’ une masse suspendue a un ressort de T__ *2
m

raideur k et peut donc osciller verticalement avec une éongation x(t). T
L e systéme nécessite une seule coordonnée généralisée x(t) qui peut décrire " Position

le mouvement delamasse m et de |’ extrémité mobile du ressort. x d"équilibre 4 5
Donc le systeme a un seul degré de liberté d=N=1.
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e L’énergie cinétique du systéme: T = mez

e L’énergie potentielle du systeme: |’ énergie U emmagasinée dans le ressort dépend de
I’ allongement des 2 extrémités du ressort. Elle s’ exprime:

1 1
U=Ek(x2—x1)2=5kx2 avec x;=x; x; =0

X
s 1
dU = E.-dx = —(—kxdx) > U = jkxdx = Ekle
0

LafonctiondelLagrange: L =T - U = L = %ma‘cz — %kx2
_ d (o a

L’ équation de Lagrange : ” (é) — (i) =0
%=m5c= d(£)=m5c’

gf de\ox > mi—(—kx)=0

Ondivisantparm c—> 5&+%x=0

Le rapport% étant positif et en posant : wg = /% on obtient | équation différentielle d’ une vibration

harmonique de laforme: ¥ + wg?x = 0.

v' Lapulsation w, ne dépend que de lamasse m et delaraideur k du ressort, est appelée « la pulsation
propre » du systeme.

v Lamasse oscille donc indéfiniment avec une période propre T, donnée par larelation suivante:

21 m
To—:()—zn\/;

Un pendule simple est constitué d' un solide de petite dimension de masse m suspendu a un point fixe O par

un fil inextensible de longueur L. Ecarté de sa position d’ équilibre, il oscille dans le champ de pesanteur
terrestre g.

Exemple 2 : Pendule pesant simple

AO N

\

Les coordonnées du systéme : }
0

{x=lsin9=x=lécose l
y=1cosf = y = —10sinf

= L’énergiecinétiquedu systéme: T = %mvm2

\
N
\
N
A
1 1 . h(2%™€ cas) 1 g
=T= Em(:'c+y)2 = Emlzﬁz(cosé?2 + sin 62) ‘__‘0 '

= T= %mlzé2
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= L’énergie potentielle du systéme: U =mgh (h est la hauteur de m par rapport a un plan de
référence donnée.)
NB : On a deux possibilités pour calculer la valeur du déplacement h, selon le choit de I’origine des
énergies potentielles (U(0)=0), ce choit doit avoir lieu lorsque la masse est dans sa position d’ équilibre 6 = 0.
L’ énergie potentielle correspond al’ énergie potentielle de pesanteur.

1°" cas : si on choisi comme origine des énergies potentielles|’axe (0x) onadonc:

h = —l.cos 6 (Lesignemoins vient du fait que lamasse m est inférieur al’ axe chois).
Danscecas: U= -mgl.cos?.
2°™ cas : si on choisit comme origine des énergies potentielles (U(0)=0) I'axe (0'x").

A I'équilibre, onaura: h = [ —l.cos §. Danscecas
U=mgl(1—-cos@)

Calcule du lagranqgien: L =T — U

1*" cas : Onremplacant T et U dansL ontrouve: L = %mlzéz + mgl.cos 6

L’ équation de Lagrange :
d (6L) <6L) _0
dt \9g 0/

d(aL)—— 12 1
a\ag) = mleg....ovv e (D)
(aL) _ .sin® )
3g) = MG LSO
MD-2)xml?6+m.g.l.sind =0
sinf = 0
Dans le cas des faibles oscillations, les angles sont tres petits on a : 62
cosf = 1-— 5~ 1

On aura donc m.1.26 + m.g.1.6 = 0, Endivisant par m.1.2 on trouve:

é+%e=0
C’est I’ équation de I’ oscillateur harmonique de pulsation propre: wy = /%

Ontrouveenfin: 0+wy%0 = 0.

2™ cas: L = %mlzéz + mgl(1 — cos )

d<aL)—— 126 1

a\ag) = m.le0 ..oivi v i (1)
(Mj— l.sin® )
5g) = TG LSO

(D-(2):m.l260+m.g.l.sind =0
On aura donc m.1.26 + m.g.l.6 = 0, Ondivisant par m. [? on trouve:

0+ %9 = 0 Avec w, = /% , et on retrouve bien le méme résultat.

Université Ferhat Abbas-Sétif- Faculté de technologie Tronc commun ST N. AKLOUCHE
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1.3.3 Solution de I’équation différentielle du mouvement

L’ équation différentielle (EDF) du mouvement est de laforme:
X+ we?’x=0

C’est une éguation différentielle du second ordre sans second membre dont la solution sous laforme
complexe est delaforme: x(t) = Ae%t

Ladérivée premiére de lafonction x(t)) (lavitesse) : x(t) = Aae®.
La dérivée seconde de lafonction x(t) (I’ accélération) : X¥(t) = Aa?e®
On remplace dansI’EDF : Aa?e® + wy?Aae® = 0 = Ae% (a? + wy?) =0
Or Ae® + 0= a? + wy? =0donc a = +jw,
Donc lasolution auralaforme: x(t) = A; e/®ot + 4, e /@t
Selon larelation d’ Euler : et/@ot = cos wyt + jsin wyt
- x(t) = A; (cos wyt + jsin wot) + A, (cos wyt — jsin wyt)
x(t) =(A; +A4; )coswot+j(A; — A, )sin wyt = Ccos wyt + Dsin wyt
Telque:C=(4; +A4, )etD=j(4; —A4;)
Donc x(t) = C cos wyt + Dsin wyt est aussi une solution de |’ équation différentielle.

Sionpose:C =a.cos @ et D = a.sinf ,onaura: x(t) = a.cos 8 cos wyt + a.sin O sin wyt

cos(x — y) = cosxcosy + sinxsinydonc: x(t) =acos(wot— 0) =acos(wet+ @), = 9+§

donc: x(t) = acos( wot + @)Tel que: a =VC? + D? et B = arc tang(%)

1.4 La force dans le mouvement harmonique e ' z«jﬁ«/ Lty
1.4.1 Exemple du pendule élastigue vertical = |l, =
—1 T 1
C'est le cas d' une masse m accrochée al’ extremite libre T """ 1 AAL _l B R
d un ressort et se déplacant sans frottement suivant une ! o —AL+x T
direction Ox vertical (voir figure). I m
v v
P=mg P =mg
Ressort avide Equilibreavec  Mouvement
une masse
@ (b) (©

R €-—mm—-—-—---
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A I’equilibre : il y adeux forces qui agissent sur lamasse m ; son poids et laforce de rappel du ressort
tension due au ressort :

YF=P+T=0 = mg—kAL=0

: Poids de lamasse m.

P
T : Force de rappel du ressort.

En mouvement : La deuxiéme loi de Newton (principe fondamental de la dynamique), nous permet
d écrire:
XF =y

v d%x .
= MmMm-—=mx
dt?

Pour un systéme aune dimension :

Apres projection on obtient mx = mg — k(x + Al). En utilisant la condition d’ équilibre précédente on
obtient :

mi=—-kx=mi+kx=0
Or: 0wl =~ = m¥+mw,x=0
m
= mi = —kx = —mw?; x; Cestlaforce de rappel due au ressort

avec k = mw?, = cte
Donc, laforce dans les mouvements harmoniques simples est proportionnelle et opposée au déplacement
et constitue une force de rappel.

1.4.2 L’étude d’une vibration harmonique en termes d’énergies

Nous voulons montrer que I’ énergie totale (mécanique), E=T+U, est constante et déduire la valeur de cette
constante. Pour celaprenons x = Acos(wyt + @), aors:

1 1 1 1
E=T+U-= Ema’cz + Ek x% = EmAzwzosinz(th + @)+ EkAzcosz(th + @)
Sachant que (sin? ¢ + cos @? = 1) et en utilisant larelation : k = mw?,
dors, E= %mAZwZO = %kAZ = constante

J\o J
Y Y

Tmax Umax
Nous retrouvons ici le fait que I’énergie mécanique de ce systéme ne varie pas. L’énergie totale est
constante.

OnaT = %ma’cz = %mAzwzosinz(th + ) = %mAZwZO[l — cos?(wot + @)].

2
=T = %mAza)zO [1 - %] = %meO[AZ — x?].

2

5 {x =0=T =T, = -mw,A2
X = iA:Tmin =0
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D’autrepart: U = %k x% = %mwzoxz

{x =0 = U = Upn = 0 (position d'équilibre)
Si

x = +A4 = U = Upay = ;mA20?

Lafigure suivante montre lavariation des énergies cinétique, potentielle et totale en fonction de x :

AE

v L’énergie se transforme d’ une énergie cinétique a une énergie potentielle.
v" Quand I’ énergie cinétique diminue I’ énergie potentielle augmente et vis versa. Cette propriété de est
appel ée conservation de I’énergie totale du systéme.

1.5 Systémes équivalents

Définition : C'est un systéme simple qu’ on représente en générale par un ressort équivalent ou une masse
équivalente.

I.5.1 Masse éguivalente : Cas d’un ressort de masse non négligeable.

m : Lamasse du ressort.

Au repos : y k
e [:Lalongueur du ressort. (k,m) <—>
e dm: masse éémentaire située aune l i dy
distance y du point de suspension. m
En mouvement : x(t) €q

o x(t) : Déplacement instantané de I’ extrémité mobile du ressort.
e dy: Déplacement de la masse élémentaire = %x(t) = savitesse = %x(t)
0 Lamasselinéique du ressort aunedistancel: p = ? = m=pl.
o Lamassedel'démentdy duressort:m; = pdy == dy
= L’énergie cinétique = X toutes les énergies de ses é éments,
=T =(l£§ (Fdy). Ex()?)
l

“1m 1m y3
T=| -=x(t)*y*dy = == x(t)*>.=
fosz()y y =5t %
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= —(—)x(t)z & 1meq x(t)? = Mgy =

1.5.2 Ressorts équivalents : On a3cas:

1°" cas : Ressorts en paralléles (en oppositions) :

Py

k (X
kq k, ou ‘T <> k

eq

M
M —1 x() M
‘J\

EG =
A

L’ élongation de chague ressort est égalea x(t) donc: M.g = (kq + ky)x = keq.x = Keq = kq + k3

—1 x(t)

2°™ cas : Ressorts en séries :

Soit x; : I’élongation du ressort k; tel que: M.g = k; x4

ky
Soit x, : I'éongation du ressort k, tel que: M. g = k, x, k
<:> eq

1 |
:>x=x1+x2—Mg( +o ky, 3 1

2 W i M
1 1 1 ki k,

= — —_— k = X

oo ki Ry < = je; 1o M 2

3™ cas : Barre liée & 02 ressorts (Distance non négligeable)
L

e

keq

o 'Y

a b
(a+b)? .
keg =757 Siazbonaura: keqg =k; +k;
_+_
ky " kq
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1.6 Analogie entre le systéeme mécanique " Masse-ressort' et le systéme électrigue "'L-C"".

Systéme mécanique Systeme électrique
Déplacement : x(t) Charge électrique q(t)
Vitesse : x(t) Courant électrique i = %
Accélération : ¥ Variation du courant : §
Masse : m Inductance, bobine, self : L
Ressort k Inverse de la capacité 1/C
Force de rappel : k x d.d.p entre les bornes d’in condensateur : %
Force d’inertie : m¥ d.d.p entre les bornes de la bobine : L §
Energie potentielle : %k x? Energie électrique : %qz
Energie cinétique : %mp‘cz Energie magnétique : %qu

Points clefs

Oscillations libres non amorties

1. Pendule élastique vertical(m, k, x):

( fk
wo = |— (pulsation propre)]
X+ wo?x =0 < {x(t) = Acos (wot + @) avec | m |
I

| 2n m
l T0=—=2n’—

2. Pendule pesant simple (m, 1, 0) :

|( [wo = f% (pulsation propre)‘

0+ w20 =0 <= {0(t) = Acos (wot + @) avec om ;
To= — =2 |-
k Wo )

S - . d (9L oL
» L’équation de Lagrange pour un mouvement unidimensionnel x : o (5) — (E) =0;
A . d (oL oL
» L’équation de Lagrange pour un mouvement rotationnel 6 : o (5) - (5) =0;
» L’énergie mécanique seconserve: T + U = Constante;
> Masse equivalente (Cas ou lamasse m du ressort n’est pas negligeable) : m,, = —
> Ressorts équivaents:
( Ressorts kq, ks, ...k, enparalléles: k., = kq + ky + .. +k,
| .1 1 1 1
5 { Ressorts k¢, k,, ...k, en série er R + P + et P
2
{Barre liée a 02 ressorts (Distance non négligeable): koq = %
kz kg
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CHAPITRE IT
Oscillations libres amorties : Systémes a un degré de liberté

Introduction : Le pendule éastique comme le pendule pesant, se comporte comme un oscillateur
harmonique a la condition de négliger tout frottement. 11 oscille alors théoriquement sans jamais s arréter.
En réalité, la masse se déplace dans un fluide (en général I'air) ou il existe toujours des forces de
frottement de type visqueux. L’ oscillateur est alors amorti et fini par s arréter.

I1.1 Oscillations libres amorties

La présence de frottements impligue une dissipation d’ énergie sous forme de chaleur ; on observe alors
e soit desoscillations dont I’ amplitude diminue au cours du temps,
e soit un retour al’ équilibre sans oscillation.

On parle alors d’amortissement. L'expression de laforce de frottement visqueux est la suivante :

Fg=—-aq

Tel que:

a : est le coefficient de frottement visqueux. a : [N.s/m].

g : lacordonnée généralisée du systeme ;

q : Lavitesse généralisée du systéme.

Le signe moins (-) vient du fait que cette force soppose au mouvement en agissant dans ladirection et le

sens contraire ala vitesse.
Dans un mouvement unidimensionnel x laforce s écrit souslaforme:

f=-a¥ =-aiu
[1.2 Equation de L agrange dans un systéme amor ti

En tenant compte de la force de type frottement fluide (coefficient de frottement visqueux a), I’ équation
de Lagrange dans ce cas devient :

d (oL aL

ai(37) = 5= Fa

Sous I’ action des forces de frottements, e systéme dissipe (perde) de |’ énergie mécanique sous forme de
chaleur, il yadonc une relation entre laforce F, et lafonction dedissipation D d’un c6té et lafonction
de dissipation et le coefficient de frottement visqueux « :

aD 1 .
[Fq =_£ etD=an]
) £ . ) A 1 I . i a—L — ﬂ = _a_D
L’ équation de Lagrange dans le cas d’ un systeme amorti devient : y (aq) 2q Py

[1.2.1 Equation différentielle: Systéme masse-r essort-amor tisseur

Reprenons le cas du pendule élastique (vertical par exemple). L’ éude de I’ oscillateur amorti sefait dela
méme facon que précédemment mais en gjoutant laforce de frottement visqueux.

: . . .. d (0L aL aD
A une dimension, I équation de Lagr ”nt:—(_)__:__
une dimension, |’ équation de Lagrange s éc 7 oz P »

L’ énergiecinétique du systéme: c'est |’ énergie cinétique de lamasse m : T:% mx?

L’ énergie potentielle du systéme: ¢’ est I’ énergie emmagasinée dans le ressort U:% kx?

Page 1
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L afonction de dissipation : D = %ax'2

LafonctiondelLagrange: L=T—-U =L = %mxz — %kx2

I
4 — = —kx kx ax

ax k a
[ %
o X T T

En remplacant dans I’ équation de Lagrange on aura: m
m
v' C'est I'éguation différentielle du mouvement dans e cas d' un systéme libre amorti.
v" Par rapport aux oscillations libres non amorties, on reconnait un nouveau terme (% X) provenant
de ladissipation d’ énergie.
v Laforme générae: q+%q+£q=0
v' Souvent I'équation différentielle est écrite sous une forme dite réduite: g + 28 ¢ + w?oq = 0

3

P
=

mx+ kx=—-ax =—> 5&+£x+£x=0

6= % [1/S]: Facteur d’amortissement.

Telsque: s . )
=— (Sans unité) : Rapport d’amortissement.
0

A une dimension laforme réduite s écrit : X + 26 & + w?px = 0

[1.2.2 Lasolution del’éguation différentielle : Systéme masse-r essort-amor tisseur

L’ équation différentielle du mouvement : X + 28 x + w?gx = 0

Il Sagit d'une équation différentielle linéaire du second ordre a coefficients constants sans second
membre.

La fonction x(t) = De™ est une solution particuliere de cette équation différentielle a condition que r

soit une des deux racinesr; €t r, del’ équation du second degré, appel ée équation caractéristique.
r2+26r+wi=0

La solution générale de |’ équation prend laforme : x(t) = C,e™! + Cye™!

Tel que: {rl = IS - a

1% cas: 6 < mp (0 < & < 1) : systéme sous- amorti ou faiblement amorti
= 62— w2 <0

- r1=—5+\/j2(a)02 —62) =— 8+ jJwe? —82=—8+ jw,
rp= =8 —jA(we? —62) = =8 —jw? —82=—8~jw,

We = Jwe? — 82 =wy/1—¢&2 :C'estlaPulsation desoscillations amorties

; On voit bien que la solution dépend des valeursde § et wy.

2w 2w 2w To To £
T,=—= = = Donc: T,=—; T,: pseudo-période
a wg /woz —52 52 1_52 a /1_f2 a p p
wy |[1-—
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L a solution : x(t) = C e ¥ sin(w,t + @) i\ Ce %t
Remarques: < Ta

e x(t) représente un mouvement vibratoire. “/\~ —_———— _ __
e L’amplitude C e~% est décroissante : x(t) \/ - ==
tend vers 0 quand t augmente. -
e [|’éongation x(t) vaosciller en restant comprise -~
entre— C e~%et € e~%.Ces deux exponentielles ;
représentent |’ envel oppe du mouvement de /
I’ oscillateur ¢’ est-a-dire les positions extrémal es !
prises par x lorsque le temps s écoule.

2émecas: d=wmo (£ =1) :Amortissement critique: r; =r,= —§

L asolution : x(t) = (€, + Cyt) e~
Si 6=%et w0=\/§=> a= a, =2Vkm: Vaeur
critique du coefficient de frottement.

Remarques:
e x(t) n'est pas oscillatoire car il ne contient pas un
terme sinusoidal.

e x(t) tend vers 0 sans oscillation quand le temps - - “
augmente.

e e systéme revient a sa position d équilibre le plus
rapidement possible.

3émecas: &> wo (€ > 1) :systémesur- amorti ou fortement amorti

{7”1 = _6 + \/62 - (1)02 [
=> r, = 5 — ,—52—(002 \
L a solution :

x(t) = e %(Cy eVo* w0’ 4 (e V8 -wo’t)

Remarques:
e x(t) tend vers 0 sans oscillation quand le temps

augmente.
e x(t) est un mouvement non sinusoidal

1.3 L’ oscillateur harmonique électrique
Nous allons voir maintenant qu'il existe un autre type d'oscillateur harmonique amorti dans un autre
domaine de la physique : I'é ectricité.
Soit un circuit éectrique, constitué des 3 éléments de base misent en série:
e unrésistor derésistance R ;
e un condensateur de capacite C ;
e ¢t une bobine dinductance L.

Page 3
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Oscillations libres amorties

Systéme a un degré de liberté
Selon laloi de de Kirchoff :

2011-2012
Ug +uc+uL=O=Ri(t)+%q+LZ—i=0
T A4
dq 1 dq? .1 .o
RE;_ ILF—():) Rq+cq+Lq_0 4 & I,;R(f)
j+—q+—q=0=§+264+w?q=0
ar7av-4 q q T woq u) | == . of
c
§== 5=5r o |
- o L
avec wz_ZLlDonc:q+28q+w0q=0=> @ -
0 T Lc Wo = Lc ‘-)f(f)
Remarque:
e Pour un amortissement critique 6 = wy = £

— Donc:
2L L

R=R,= 2 |-
[1.4 Décrément logarithmique

(4

D = In*

Définition : C est le logarithme du rapport de 2 amplitudes successives des oscillations amorties.
x(t2) , tz = tl + Ta
Ou x(t,) et x(t; + T,) représentent les amplitudes des oscillations aux instants t; et (t; + Ty):

généralement ces deux instants sont choisis comme correspondant a deux extrema successifs de méme
signe. Cette quantité mesure la décroissance des amplitudes pendant une période.

t
D—lnx( 1)_

x(1)
_ —In x(t1)
x(t2) x(t; +Tg)
Ta

A1

Pour un systéme amorti :
A2

x(t) = C e % sin(wgt + @)

\ PN N~ .
" \/ . NS Vt‘(s) -
D= C e 9t sin(wgty + @)

C e—8(t1+Tg) sin(wg(ty + Ty) + @)
D =In(e®Te) = 6T,

o To £ . .

5Ta — 8\/1f_52 = E(DO \/1:)52 = 21 \/1_52 ' dOI‘lC.

D=2 = g1, =272
x(t2) 1-22
Remarques:
[ ]

Pour plusieurspériodes: T = nT,; t, = t; + nT,

x(t
= D =1n (1)—

—In x(ty)
x(t3)

x(t, +nT,) [1-¢2
La pseudo-période et e décrément logarithmique n’ont de sens que si le régime est
pseudopériodique.

[1.5 Facteur de qualité (Facteur de surtension)

n
noT, = 25

Pour décrire I'amortissement d'un systeme oscillant mécanique ou é ectrique on emploie le facteur de
qualité Q définit par I’ expression suivante :

Université Ferhat Abbas —Sétif-  Faculté de technologie

<
(5]
o))
<
[
Tronc commun sciences et techniques

N. AKLOUCHE



CHAPITRE 1l Oscillations libres amorties Systéme & un degré de liberté | 2011-2012

Q — 27_", Emax
|AE|

Emax - €t I’ énergie maximale stockée dans le systeme.
|AE] : est I’ énergie perdue par cycle.

lanotion de ‘qualité pour caractériser |’ oscillateur, comme la grandeur qui traduit |'aptitude du

JO

systéme considéré a garder son énergie tout en oscillant. La qualité est d’ autant meilleure que le

Emax
rapport T est grand.

[1.5.1 Calculedu facteur de qualité: systéme masse-ressort-amortisseur (m.k, a)

Prenons |’ exemple d un systeme masse-ressort-amortisseur (m, k, «) faiblement amorti dont la solution
del’ équation différentielle est souslaforme:

x(t) = xo sin(wgt + @), xo =Ce % etw, = ’woz — 8~ Wy

On ad une part : Emax = %ma)zoxo 2 (Cf.chapitrel).

D’ autre part: AE = fth“F(t)dx

Tel que: F(t): est laforce de frottement visqueux : F(t) = —a x(t)

t+Tq t+Tg t+Tq

:>AE=f —aic(t)dxzf —ax(t)[xdt]z—af x2dt

t t

t
Ona: x(t) = xg sin(wy t + @) = x(t) = xq Wy cos (wyt + @)

t+T,

= AE = —ax?,w, > j cos?(wgt + @) dt
t

t+Ta t4Ta 1 + cos 2(wg t + 1
f cos*(wot + @)dt = f ; ot +¢) dt = AE = —EaTa wo?x}
t t
21 )
T, =w—; wg ® wy > AE = —anwoxj

a

o On retrouve bien une variation négative de I’ énergie ¢’ est-a-dire une perte d énergie au cours du
temps.

0 L’énergie perdue se transforme en énergie thermique ou elle se disperse en se diffusant dans le
milieu avoisinant.

En remplacant dans |’ expression de Q, on trouve::

1 2 2

_ MW X0 ™ _ mu, mwg wo 1
Q=212 =M% _,g_Me _© 1
T[axowo a

[1.5.2 Calcul du facteur de qualité: systeme électrigue (RLC)

Dans un systeme mécanique (m, k): E,, 4 = %mwzox0 2 (cf. Chapitre 1)

Dans un systéme dectrique (RLC): Epax = %szoqﬁ

Dans un systéme mécanique (m, k, a): AE = —maxiw, = Dansun systéme éectrique (RLC):
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AE = —mRq3w,

Donc :
1 2 2
_anLwO%_Lwo - = 1:0_1 L 1
Q= nRqg?w, R '~ °  |JLC T RC 2¢
Remarque:

e Plus|’amortissement est faible, plus la qualité du systéme oscillant est grande. Or Q est d autant

plus grand pour un w, donné, que I’amortissement est faible. Un systeme trés amorti a un Q
faible.

Points clefs
Oscillations libres amorties

¢+ L’équation de Lagrange pour un mouvement unidimensionnel X :

d oL, dL _ aD . 1

a oty o2 __ 98 — 2 x2
dt(ax) ax  dx ' D_z‘“C
5=2
S . 2
% L’équation du mouvement : ¥ + 28 x + w?ox = 0 = 5
=

. o 1= —6+.6%—wy?
< x(t) = Ae™ est une solution particuliére tel que: { 1 0
ry = -6 — 62 - WOZ

Amortissement faible : § <y (0 <& <1) = 8% —wy? <0

> Lasolution: x(t) = C e % sin(w,t + @)

W, = \Jwg? — 82: Pulsation des oscillations amorties.
avec

T, = i—':: pseudo — période.

Amortissement critique: d=m, (§=1)

> Lasolution: x(t) = (C,+ C;) e % avec a = a, = 2Vkm
Amortissement fort: & > @ (§ > 1)

> Lasolution: x(t) = e % (D, eV8*~Wo’t 4 p,e V& -wo’t)

K/

< LeDécrément logarithmique: D = 6T,

s U'énergie stockée mw Lo
% Facteur dequalité: Q = 2 7.————2 =0 - =0
U'énergie perdue par cycle a R VA3
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CHAPITRE 11T
Oscillations forcées amorties : Systemes a un degré de liberté

Introduction : On a vu que |I’amortissement des oscillations était d0 a une diminution de |’ énergie
mécanique sous forme de chaleur dissipée. Pour compenser ces pertes dénergies et entretenir
(conserver) les oscillations, il faut une source d'énergie a travers une force extérieure. On va donc
rgjouter une force extérieure souvent dite excitatrice.

Il va donc y avoir une force supplémentaire qu’il vaut mieux qu'elle soit colinéaire au mouvement et
gu'elle soit le plus possible dans |e sens du mouvement.

Dans ce chapitre, on étudie la réponse d'un systeme amorti a 1 ddl a une excitation harmonique
sinusoidale produite par une force extérieure au systéme. Ce type d’ excitation se rencontre fréquemment
dans |’ industrie (machines tournantes, ventilateurs, moteurs, pompes ...).

[11.1 Equation différentielle du mouvement

. , .. d L, oL aD
I un mouv t detr ion,onécrit: —(—)-—=——+F
a) Pour un mouvement de trandation, on écl o aq) T 34 ext
. , ..d L, dL aD
b) Pour un mouvement de rotation avec un angle @, on ecrltz(ﬁ)-%=—£+

a
Tel que: M(Fex) = Foxe- L = — | F oy

M(F,,,) : Est lemoment de laforce appliquée [N.m].
Le moment : caractérise la capacité d’ une force afaire tourner un objet autour d’ un point.
L : Lebrasdu levier : est ladistance droite d’ action de laforce.
r . Ladistance parcourue par la masse dans la direction de |’ action de laforce.
[11.1.1 Exemple: systéme masse-r essort-amor tisseur s
Reprenons |e cas du pendule élastique (vertical par exemple).
L’ étude de I’ oscillateur amorti se fait de laméme fagon que i
précedemment mais en goutant une force extérieure (F,, ). al
A une dimension, I’ éguation de Lagrange s écrit :

2 %) _ﬂ= _a_l? +F ot

dt “ox ox d0x
Prenons une force sinusoidale appliquée alamassem: F,,; = F, sin wt.

ext

L’ énergiecinétique du systéme: c'est I’ énergie cinétiquedelamassem : T :% ,1,';9@24:

L’ énergie potentielle du systéme: ¢’ est I’ énergie emmagasinée dans le ressort : U :§ kx?

L a fonction de dissipation : D = %ozx'2

Lafonction de L agrange: L :T-U:§ mx? —% kx?
(d <6L)
—| =) =mx

dt\ox
oL

—kx

En remplacant dans |’ équation de Lagrange on aura: mx + kx = —ax + F sin wt
Ondiviseaorspar met ontrouve: X + % x + %x = %sin wt
Souvent I'équation différentielle est écrite sous laforme réduite: ¥ + 28 & + w?gx = %sin wt

6= % [1/S]: Facteur d’amortissement.
Telsque:

Page 1
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&= — (Sans unité) : Rapport d’amortissement.
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Nous obtenons donc une éguation différentielle linéaire du second ordre a coefficients constants avec
second membre.

[11.2 Solution de |’ équation différentielle du mouvement

La solution générale de cette équation différentielle est la somme de deux termes :
¢ Une solution de |’ équation sans second membre : solution homogene xy(t),
» Une solution de I’ éguation avec second membre : solution particuliere xp(t).

Lasolution totale de I’ équation du mouvement seradonc : x(t) = xx(t) + xp(t)

I11.2.1 Solution homogéne:

L a solution homogene correspond ala solution de I’ équation différentielle sans second membre :
i+26x+w?x=0
Il apparait que la solution de |'équation différentielle homogene est tout simplement la solution trouvée
pour I'oscillateur harmonique amorti en régime libre dans le cas des oscillations faiblement amorties :

xy(t) = Ce % sin(w,t + Q) aveC w, = Jwy? — 82

Remarque: ]
e Lasolution générale del’ équation sans second membre Ta
correspond a un régime transitoire (qui ne dure qu’un A >
certain temps). N~
U ~
[11.2.2 Solution particuliére:

Lorsque la composante xy(t) devient vraiment négligeable, il

ne reste plus que la solution particuliere, qui est la solution

imposée par la fonction d'excitation. Nous disons que nous sommes en régime forcé ou régime
permanent.

La force excitatrice oblige le systéme mécanique a suivre une évolution temporelle équivalente a la
sienne. Donc s F,,; est une fonction sinusoidale de pulsation w; aors la solution particuliere xp(t) sera
une fonction sinusoidal e de méme pulsation w.

Les oscillations de la masse ne sont pas forcément en phase avec la force excitatrice et présente un
déphasage noté ¢. La solution particuliére correspondant au régime permanent s écrit dont :

xp(t)=Asin (wt+ @)
Pour des raisons pratiques, il est commode d’ utiliser la notation complexe. La grandeur complexe
associée ax(t) s écrit :
3p(H=A el(@t+e) gt Foy = Foeimt

Déterminer les grandeurs A et ¢ revient a chercher le module de I’ amplitude complexe.

I11.2.2.1 Calcul del’amplitude A

3p(t) Vérifiel équation différentielle avec second membre: 3p + 268 3p + w?(3p = %ei‘”t = Bel®t (*)
Calculons la dérivée premiere puis le dérive second :

3p(D) = Ajo @O = jw 3p(t)

t) = A ei(wt+¢p) - .
o {3P(t) = Ajlw2el@tHe) = _ 2 3,(t)
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On remplace dans (*) et on trouve : —w? 3p(t) + 28jw 3p(t) + w?, 3p(t) = Bel®t
= [(w?%o — w?) + 26wj] 3p(t) = [(w?; — w?) + 26wj] A /@ ®) = Belwt

= [(w?, — w?) + 26wj] Ae’? = B

On divise sur "e/?" et on trouve: [(w?q — w?) + 26wj] A = Be ™% ... ...... (1)
L e conjugué de cette équation est lasuivante : [(w?, — w?) — 26wj] A = Bel® ... .. ... (2)
(1) X (2) = A%[(0?) - 0D)? + (26w)?]| = B2 = A = 5 = cte
J(wzo—w2)2+(25w)2
[11.2.2.2 Calcul de @
[(@% = %) + 26wj] 4 = {B (Co:jpe:jjsingo) = {A(a;si)z Q;Z)—; g;;scp =99 = (wz_ozfa(i)z)

—20w

== Q= ATCtg (((1)20——(1)2)

B

Donc: xp(t)= -
J(wzo—wz) +(26w)?

sin [wt+Arctg ( —280

wZp-w?)

Remar ques:

e Lasolution générale del’ équation différentielle s écrit : x(t) = xx(t) + xp(1).
o xy(t) est appelée solution homogene caractérisant un régime transitoire qui disparait
exponentiellement avec le temps. Quand le régime transitoire disparait : x(t) = xp(t)
e xp(t) est appelée solution particuliere d amplitude A = 5 caractérisant un
\/(wzo—wz)2+(26w)2
régime permanent (stationnaire) car il subsiste aussi longtemps que la force extérieure (F,,;) est
appliquée. Nous notons la dépendance de I'amplitude A de la pulsation w.

e Lasolution x(t) auradonc souvent une allure caractéristique comme celle présentée sur lafigure
Ci-dessous :

JlS

s(t) =5 exp(-0,2t) cos(15t) + cos(16t)

Mml n» A A A

b

B

Y
A

Régime transitoire Régime permanent
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[11.3 Etude du régime per manent : phénomene de résonance en amplitude
[11.3.1Lavariation del’amplitude en fonction de la pulsation de la force pour différentesvaleursdeg :
Soit A(w) I’amplitude de la solution particuliéere caractérisant |e régime permanent (forcé) :
B
V(w2 — @2)2 + (26w)?
2
A(w) = i = B/w"0 = 4o
2 _“’_2 20 @ 2 _ﬂzz 28\, o _322 2, @ .
w2 J(l ) +@o7 ) J(l 2y?) (2] J(l (29?) +2er()
4. =B -9 _Fo — _Fo _Fo .4 _Fo
Telsque: A, = et f—wo avec B = - = A = el & Donc: Ay = .
Ay
% w2
\/(1 - (w_o)z) + (290
Ao

JZ— et cherchons lavaleur maximale de A(r).
(1-r2)"+(2¢r)2

A(w) est maximale quand le dénominateur est minimal.

Posonsr = wi = A(r) = (1 —r?)? + (2&r)? et cherchons lavaeur maximale de A(r).
0

A(w) =

Alw) =

Posonsr == = A(r) =
Wo

dA(r) )
A max © = 0= [2(1 —r)?(=2r) +8&r] =0
dA(T) s e r=0
ar —0=>—4T'[1—T _ZE]_OZ:'{T:\/?ZEZ
On a un minimum ou un maximum selon le signe du deuxiéme dérivée :
d2A®r) 2
2 r=0 = =8 —4<0;car0<é<1
ddigr) = 12r? 4 8¢ — 4, donc: a
r= /1—2§2=>%(;)=8—16§2>0; car0<&<1
w
—=0.... solution refusée
Wo

0
. AW - @\ - 128 Y
Donc: o estmaxlmalepour(wo) =41-2§ <1:>E<\/E

Lavariation de I’amplitude en fonction de la pulsation de laforce pour différentes valeurs de € est
représentée sur lafigure suivante :

A(w) :
Ao

)
= | _
25 3.0 wO
< - > < - > <
Amor tissement Amortissement o
| nefficace Efficace S
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Remarques:

L’ amplitude A augmente quand le rapport d’ amortissement & diminue.
L’amplitude de vibration atteint un maximum quand @ = w, : on dit gqu'il ya résonance: la

valeur maximale (wﬂo) (correspondant a la valeur maximale de |I’amplitude) n’est pas égale a 1
maiségadea./1 — 2§ <1.
Discussions:
Au début d’un mouvement résonnant, lorsque la force est appliquée au systéme, la majeure partie de
I”énergie, fournie lors de chaque cycle, est emmagasinée dans e systeme; une faible partie se dissipe en
frottement. L’ énergie ainsi emmagasinée par e systéme fait augmenter progressivement I’ amplitude de ses
oscillations jusgu'a une valeur maximum. Cette valeur subsiste tant que subsiste I’ apport d’ énergie par la
force extérieure.
Plus I’amortissement est faible, plus cette courbe est aigue et plus le maximum est grand : en I’ absence
d'un amortissement suffisant rien ne viendrait limiter les amplitudes des oscillations & s amplifier, risque
de destruction du systéme : le systéme entre en résonance. Les conséquences peuvent étre graves. On peut
citer deux cas connus:
L Le 18 avril 1850 a Angers, un régiment traversant au pas cadencé (harmonieux) un pont
suspendu enjambant le Maine provogua sa destruction.
Ed  Le 7 novembre 1940, six mois apres son inauguration, le pont suspendu de Tacoma (Etats-
Unis) était détruit par les effets des rafales de vent qui sans étre particuliérement violentes
(60 km.h™) étaient réguliéres.

[11.3.2 Lavariation dela phase en fonction de la pulsation dela force pour différentesvaleursde & :

Soit ¢ laphaseinitiale delasolution particuliere caractérisant le régime permanent (forcé) tel que:

—26
t99 = Crra

w2g-w?)

Nous remarguons que tg ¢ est négatif. Cela parait normal qu'il y ait un retard de I'oscillateur par
rapport a la force qui entretient le mouvement. L'oscillateur harmonique essaie de suivre le
mouvement en étant ralenti par les frottements, donc il doit obligatoirement prendre du retard par
rapport a l'oscillation excitatrice donc avoir un déphasage négatif. Ce déphasage est dépendant de
lapulsation de laforce w.

¢ 20w —26w _
9P = wromar) — wZo(1-(2)?)
—28w ) w
w2, =—2(w—0)(w—0)
1—(w—0)2 1—(w—0)2
w
—2F (=
o = i)
_ (92

Si i=1(oo=oo0)= tgp = —0 &= @ =

Wo
T
—2;VE.
e Sé=0=>tgp=0=¢p=00up=-m
Remarques:
L’ oscillateur est en résonance de phase quand 0 w
* i Pheseq 05 1 15 2 25 =%
(P = _E pOUI’ w=w0. wq

L’ oscillateur est toujours en retard de phase par rapport alaforce et ce retard augmente lorsque la
pul sation augmente.
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e L’oscillateur et laforce sont en phase pour w = 0

Conclusions:
Selon lavaleur de & on a3 cas possibles:
AxAg=22
1% cas: Faibles fréquences : € < 1 (o < wg) = { 0 o k
(p =

. . A=0
2éme cas : Hautes fréquences: & > 1 (w > wg) — {(p -

i ) (ﬂ) — /1 _ 2{2’ A:ax — 1 ;
3émecas: Larésonance i ¥ =1 (w =~ wg = w,) - { 0 o 2V1-E,

T

¢=-3
Remar ques.

e Si &= 0(systémenonamorti) : I’amplitude tend versI’infini or en réalite, les systemes sont tous
amortis donc I’amplitude n’ est jamais infini.

Si & « ( systéme faiblement amorti) “:;— ~ zl;i (0~ wy ~ ®,)
0

I11.3.3 Phénoméne derésonance et Facteur de qualité

e Dans les systemes ééctriques, ce phénomene permet de calculer le facteur de quaité Q qui

augmente lorsque I’ amplitude maximale augmente Q = A;'lﬂ ~ zl;
0

e Une autre méthode pratique pour déterminer le facteur de qualité: Q =

wo

w2 W1
e Pour caractériser I’ acuité (intensité) de la réponse d' un oscillateur en fonction de la pulsation, on
définit une bande passante : w, — w4

Amax
T |
Amax I
V2 ! I
| —_— — — —— =
| (R B
1 1
: 1 ! 1
| 1 1 I
1 1
: 1 ! 1
| 1 | I
| ] 1 1 o
Wy Wy W w(rad.s™1 »
T ( ) W, Wy, W w(rad.s™)
Conclusions:

e Quand & augmente = Q diminue = w, — w4 augmente = |la courbe de résonance est plus
large = diminution de I’ amplitude de résonance donc de la qualité aussi.

e Lesextrémités de la bande passante correspondent & une amplitude de vitesse v/2 fois plus petite
gu’ alarésonance.
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Points clefs
Oscillations for cées amorties

1. Un mouvement unidimensionnel x:

«» L’éguation de Lagrange:
d AL, 9L _ D
6x) ax ox .
% l'équation dlfferentlelle sous laformeréduite : x + 28 x + w?gx = ;"sin wt
+«» Solution de I’ équation différentielle du mouvement: x(t) = xy(t) + xp(t)
% Lasolution homogene: xy (t) = C e %t sin(w,t + @) avec w, = /w2 — 82

% Lasolution particuliére: xp(t)= J(wzo—i()z/);n+(zsw)2 sin (wt+ Arctg ( 2522))

% Lavariation deI’amplitude en fonction de la pulsation de laforce :

Afll:) = . = {Aflw) est maximale pour (wﬂo)* - \/1_—252

2 0
J(l—(w%)z) (2D

[ w A
Zf(wo) {w—o—lﬂ t'g(p——OO@(p——E,VéT

1 .
+Fexe; D=3a x?,F oyy = Fo sin wt

E=0=tgp=0=¢p=00u¢p=—

_Fo
Ag =~
=0

» Hautes fréquences : E > 1 (o > wg) — { ~

Q

» Faibles fréquences : € < 1 (w0 K wg) — {A

(p =
) A 1
— 1 222 max _
» Larésonance:&{=1(w = wg = w;) - (‘"o) ! 28/1-82,
¢=-3
% Lefacteur dequalité: @ = Amax o 1 _ %o
X qu Q= ST oo

2. Un mouvement rotationnel 0 :

« L’équation de Lagrange:

d(oL\ _oL_ oD or , o .
E(%)_% TR Fextl ; T:estladirection d’'action delaforce F,,;
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CHAPITRE IV

Oscillations libres des systemes a plusieurs degrés de liberté

Introduction : Dans ce chapitre, nous examinons les systémes qui se composent de deux ou plusieurs
oscillateurs qui sont couplés dans une certaine facon et qui ont plus d'une pulsation d'oscillation. Nous
allons voir que ce couplage produit de nouveaux et d’importants effets physiques. Chacune des pulsations
correspondent a une maniere différente dans laguelle le systeme peut osciller. Ces différentes fagcons sont
appel és « modes normaux ». Les modes normaux d'un systéme sont caractérisés par le fait que toutes les
parties du systéme oscillent avec la méme pulsation. Les oscillateurs sont couplé parce qu’
ils se trouvent rarement dans un isolement complet et sont généralement capables d osciller avec de
différentes facons. Les oscillateurs couplés sont également importants car ils ouvrent la voie a la
compréhension des ondes dans les milieux continus. Le mouvement des ondes dépend des systemes
voisins qui vibre et qui sont couplées entre elles et peuvent donc transmettre de |’ énergie entre elles.
Définition :

Un systeme est a plusieurs degrés de liberté (ddl) s plusieurs coordonnées indépendantes sont
nécessaires pour décrire son mouvement. Il y a autant d’ équations de Lagrange que de degrés de liberté
ou de coordonnées géneéralisees.

V.1 Systemes a 2 degrésdeliberté

Pour I’ étude des systémes a deux degrés de liberté, il est nécessaire d’ écrire deux équations différentielles
du mouvement que I’ on peut obtenir a partir des équations de Lagrange :

d ( oL ) ( oL ) _ 0

dt \aq;, dq,/)

d ( dL ) ( oL ) _0

dt\dq, aq,)
Un systéme a 2 degrés de liberté posséde 02 coordonnées généralisées, 02 équations différentielles et 02
pulsations propres ( w;, w;).
IV.1.1Lestypedecouplages

a) Couplage Elastique : Le couplage dans les systemes mécaniques est assuré par asticité. Dans les
systemes éectriques, on trouve les circuits couplés par capacité, ce qui est équivaent au couplage
par élasticité.

Ky K K,
AN @M@ Vl
T—-— \—*
X1

X2

|
|
|
|
|
A

v vl

Les équations différentielles correspondantes sont :

Xy + 261 X1 + 0?x; = a;x
{ 1 11 177172 Tdsque: a;x, et ayx; sont lestermes de couplage. a4 et a, sont des

kz + 262 kz + wzxZ = azXq
constantes.
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b) Couplage Visqueux : Le couplage dans les systemes mécaniques est assuré par amortisseur. Dans
les systémes électriques, on trouve les circuits couplés par résistance, éguivalents au couplage par

amortisseur.
ANAAA 2! .
X ‘ Xy

L es équations différentielles correspondantes sont :

X1 + 281 X1 + @?x; = byi
{xl 1 X1 T X = N2 Tysque: by et byiy sont lestermes de couplage. by et b, sont des

kz + 262 kz + wzxZ = ble
constantes.

c) Couplage Inertiel : Le couplage dans les systémes mécaniques est assuré par inertie. Dans les
systemes électriques, on trouve les circuits couplés par inductance, équivalents au couplage par
inertie.

—

o

%

k

k

_lxz
S

oo

Les équations différentielles correspondantes sont :

X1+ 261 X1 + 0?xy = 1% .. ..
{_,1 LT 1T 2 Tdsque: ¢ ¥, ef e, ¥4 sont lestermes de couplage. ¢4 €t ¢, sont des constantes,
X2 + 262 X3 + w Xy = C2Xq

1V.1.2 Méhode générale derésolution des éguations de mouvement.
Pour un systéme mécanique, la mise en équation du systéme couplé passe par la méhode a suivre
suivante:

1 —On écrit les 2 équations différentielles en fonction des coordonnées généralisées.
2 — On fait I’hypothése que le systeme admet des solutions harmoniques. Ce qui signifie que le systéme
peut osciller avec laméme pulsation pour tous les oscillateurs.
3 — Larésolution des systemes d' équations permet d’ obtenir 2 pulsations particulieres w; et w, ;
ce sont les pulsations propres.
4 - On substitue ensite w, dans|'une des 2 équations et | on obtient le 1% mode propre. On substitue
enslite w, dans|'une des 2 équations et I’ on obtient le 2°™ mode propre.
5 — On écrit les 2 solutions général es des équations différentielles du mouvement.
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V.1 .3 Exemples de systemes a 2 DDL
[V.1.3.1 Pendulescouplés: (Couplage Elastique)

Considérons deux pendules qui sont couplés par un ressort horizontal de
constante de raideur k a une distance a de I'axe de rotation.

[0 1. Equationsdifférentielles du mouvement :
%+ Lescoordonnéesdes édémentsdu systéme::
Lamasse m,; setrouve aune distance [; de O.

Xm, = l;.5in 0 4 Xy = 1,6,c05 6 4 .
my { ' ' = v = 1,°61

le = _ll'COS 0 1 yml = llél sin @ 1

Lamasse m, setrouve aune distance [, de O.

{ Xm, = lp.5in 0, {J’sz = 1,0,c05 6 ,
m;

2 202
=v =1,°0
Ym, = —lz.c0s 0, my "2 T2

ymz = 128.2 Sln9 2
k = {a.sinB; — a.sinf, = a(sinf; — sinb,)
. ) 2 D \ 1 1
% L’énergiecinétiquedu systéme: T = Tm, + Tm, = E"wmlz +Emvm22
» Tm, = %ml(a'cml + Ym,)? = %mlllzéf(cos 0,% + sin6,?%)
— Tm1 = %mllzléi
* Tm, = %mz(icmz + Vm,)? = %mzlzzézz(cos 0,2 + sin 6,2)
= Tmz = %mzlzzég
1 . .
=T-= E(mllzlei + mzlzzezz)
< L’'énergiepotentielledu systeme: U = Uy + Uy, +Up,
Si on choisi comme origine des énergies potentielles|’axe (0x) on apour les deux masses:
Up,+Up, = —mygly.cos ;—m;,gl,. cos 6,(Le signe moins vient du fait que la masse m est inférieur
al’axe choisi).
1
U= Eka2 (sin@, — sin@,)>—m, gl,.cos ;—m,gl,.cos 0,
= Lafonction de Lagrange seradonc :
.2 .2
L=T-U-= %mllzlel + %mzlzzez - %kaz(sinel — sinf,)?>+mgly.cos 6;+m,gl,.cos 0,

On remarque bien deux coordonnées généralisées qui décrit le mouvement donc on aura deux éguations

de Lagrange:
d/JdL ( oL )
dt\ 96, 06,

HEINCS

0

0

d /0oL 2.6
—(==|=m
dt\ a8, 11710

dL
k 67) = —ka%cos0,(sin@, — sin@,) — m,gl,sinb,
1

= m,1?,0, + ka*cos0,(sind, — sinb,) + m; gl sinf; = 0

sinf =~ 6
Dans le cas des faibles oscillations, les angles sont trés petitson a: {COSG ~1-%~1
2

Page 3
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= mllzlél + ka2(91 - 92) + mlgllel =0
Donc les 02 équations différentielles du mouvement sont :

m,1%,0, + (ka? + mygl,)0, = ka®6, ..........(1)
mzlzzéz + (kaz + nglz)ez = ka201 (2)
Remargue

e Letermede couplage ka? est en fonction de k donc le couplage est éastique.
e Sia=0ouk =0 = couplagenul : les deux systémes sont indépendant.
e Lesdeux équations différentielles possedent 02 solutions 84 (t)et 8, (t).

L 2. Onfait I’hypothese que le systeme admet des solutions harmonigues :

Donc: 64(t) = Aisin(wt + @) €t 0,(t) = Aysin(wt + @)
Telsque: A1, A;, @ et @', w est I’ une des pulsations propres du systéme.

0.(t) = Assin(wt + @) = 0, = —w?0,
{Oz(t) = Aysin(wt + @) = 0, = —w?0,
On remplace dans les équations (1) et (2) donc :

(ka? + mygl, — myl%; 0?0, —ka’*6,=0.........(3)
{—kaﬂ'a1 + (ka? + mygl, — myl?, @20, =0.......(4)

L 3. Calcul despulsations propres: Onsupposequemy; =my; =m,l; =1, =1
(ka2 + mgl — ml* w? —ka? ) (91) ~(9)
—ka? ka? + mgl — ml? w?/) \92/ 10

Ces deux équations accepteront une solution si le déterminant =0
ka®? + mgl — ml? w? —ka?

2 2
—ka? ka? + mgl — ml? w?| 0 & (ka® + mgl - ml* w?)" - (ka?)" = 0

2
(ka? + mgl — ml? wz)z - (kaz)2 =0 = ka®? + mgl - ml? w? = {+£a2
—ka

w21 = g (E) 2 2 l 1‘ l t'
= l m) U tels que : {wl a 1ére pulsation propre
w?, = % wy: la 2éme pulsation propre
Remarque

e S a=00u=0,|ecoup|ageestnul=>w21=w22:%
e Lorsgue le systeme oscille avec une de ses 02 pulsations on dit que le systeme oscille dans un de
ses deux modes.

[ 4. Lesmodesd’ oscillations

Lemode C'est I’ é&at dans lequel 1es éléments dynamiques du systéme effectuent une oscillation
harmonigue avec la méme pulsation qui correspond a une de ses deux pulsations.
4.1 Calcul desmodesd’ oscillations :

Dans chaque mode les deux masses effectuent des mouvements harmoniques simples avec laméme
pulsation (w; ou w, ) et les deux pendules passent par la position d’ équilibre au méme instant.
Premier mode : on remplace dans (3) ou (4) par w?; = %+ 2 (%) (%)2 :
On obtient aprescalcul : 6, = —04
Remarque:

e Danslepremier mode les deux pendules ont la méme pulsation w, , |laméme amplitude et un

déphasage = .
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e Lesdeux pendules ont des mouvements Opposes.
e Elongation et compression du ressort chaque période sauf au point du milieu du ressort.

% %

/IO

Deuxieme mode :
on remplace dans (3) ou (4) par w?, = % :
On obtient aprés calcul : 8, = 6,4
Remarque:
e Lesdeux pendules se déplacent dans e méme sens.
e Leressort ne subit aucune variation de salongueur.

7 %

L 5, Calcul des solutions des équations différentielles :
Chacune des mouvements 0 et 0, posséde deux composantes harmoniques de pulsations w, ou w,
Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du
systeme.
Lasolution générale s’ écrit alors comme une combinaison linéaire des deux solutions.
{Gl(t) = A;sin(w4t + @1)+Bsin(w,t + @3)
02 (t) = Azsin(wlt + (P1)+stin(w2t + (Pz)

Dans le premier mode: w = w; = 0, = —0; = Ay = —A; = V;(}), V,est le 1% vecteur propre
Dans le deuxiéme mode: @ = w, = 6, = 6, = By = B, = V(1), V,est e 2°™ vecteur propre
Donc:
0,(t) = Asin(w1t + ¢@4) + Bsin(w,t + ¢,)
{02 (t) = —Asin(wt + @) + Bsin(w,t + @5)

L 6. Calcul desconstantes A, B, @4 € @2

61(t) = 69, 0,(t) =0
6,(t) =0,6,(t) =0
{ 0.(t) = Aw,cos(w it + @1) + Bwycos(w,t + @3)
0,(t) = —Aw,cos(wt + @) + Bw,cos(w,t + @;)
{91(0) = Asin(@4) + Bsin(¢@;) = 0, { 61(0) = Awcos(p,) + Bw;cos(@z)
6,(0) = —Asin(@4) + Bsin(¢;) =0 0,(0) = —Aw,cos(p,) + Bw,cos(¢p3)

Supposons que :{
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B T
QY1 =@ = 2

A=B=

N| D+

Bone 0.(t) =9% [sin (w1t + 52 + sin(w,t + gi]
0,(t) = 7" [—sin (w1t + E) + sin(w,t + E)]

w; —® w; +w
01(t)=00cos(le)t+cos<le>t
w; +w

2 l)t

_ . (W2 — Wy ,
0,(t) = —0ysin (T) t+ sin ( 2
L 7. Phénomeéne de battement :
Lorsgue le couplage est faible (k faible), les pulsations propres des 2 oscillateurs (w4 et w,) sont voisines
(w1 = wy; = Aw = w, — w4 est faible), il se produit un phénomene de battement. Les 2 oscillateurs

se transmettent de I'énergie entre eux et vibres avec une pulsation w éga a la moyenne des deux

pulsations propres w = %(wz + w;) avec unepériodeégaea T = %ﬂ = ﬁTandis que la pulsation
2 1
du battement est égdea wg = %(wz — wq) ,avecune période Tz = - 4”{»
27w

[V.1.3.2 Pendules couplés: (Couplageinertiel) y
| X
Considérons deux pendules qui sont couplés par une masse m, qui o

setrouve aune distance [, del'axe derotation.

[0 1. Equationsdifférentielles du mouvement :
%+ Lescoordonnéesdes édémentsdu systeme:
Lamasse m,; setrouve aune distance [; de O.

Xm, = l1.5in 6 4 Xm, = 1,0,cos 6 4 2 a2
m {ymlz—ll.cose1 { = V1 = 4707

Vm, = 1,6, sin6 ;
Lamasse m, setrouve aune distance (I; + [,) de O.

Xm, = l1.sin 6 1 +1;.5in 0 , Xm, = 1,0,c05 0 1 + 1,6,cos 6 ,
2 {}’mz = —lj.cos 601 —1l.cos 0, {}'Imz =1,6,sin6 ; + 1,0,sin6 ,
Calcul dev,,,

v?,, = (L161c0s 0 1 + 1,6,c05 0 2)2 + (146;sin 6 ; + 1,0,sin6 ,)?

V2, = 12107 + 12,02 + 21,6,c05 0 1.1,6,c05 0 5 + 21,6, sin 6 ;. 1,6, sin 6 ,
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vzmz = l21912 + l220'22 + 2l191l292(COS 0 1COS 9 2 + Sin9 1 Sin9 2)
Or:cos (01— 6,)=cos6,c0s0,+sindsinb ) =v%, =1*07+ 1,05+ 21,6,1,6,c05 (61— 6 ;)

Dans le cas des faibles oscillations, les angles sont trés petitsona: {cos (81— 6 ;) = 1
D0nC . vzmz = l219.12 + 122922 + 211[2.9192 = (llg.l + 128.2)2

) . R 1 1
% L’énergiecinétiquedu systéme: T = Tm, + Tm, = E"wmlz +Emvm22
1 . . 1 . .
" Tmy = Smy(hy, + Ym,)? = Emlllzef(cos 012 + sin6,%)
1 .
= Tm, = §m11219%

1 1 . .
* Tm, = Emzvzm2 = Emz(l191 + 1,6,)?

=T-= %m11219§ + %mz(llgl + 1262)2
< L’énergiepotentielledu systeme: U = Uy, +Up,

Si on choisi comme origine des énergies potentielles|’axe (0x) on apour les deux masses:
Up,tUpm, = —mygly.cos 01—m;,g(ly.cos 61 + 1. cos 6,)
(Le signe moins vient du fait que la masse m est inférieur al’ axe choisi).
U=—-gliy(mq + m;)cosB,—m,gl,.cos 0,
= Lafonction de Lagrange seradonc :

.2 . . (2
L=T-U= %m112101 + %mz(l101 + 1,0;) + gly(my + m,) cos 81+mygl,.cos 0,

On remarque bien deux coordonnées généralisées qui décrit e mouvement donc on aura deux éguations
de Lagrange:

(4 (6_L> (2=
{dt 96, 00,
d /oL oL
la57) - o) =0
(d (oL ) L
Ja(ae'l) =myl®10, + myl1 (11601 + 120;) ) ) ) ~
IL = m41°104 + myl°101 + myl11,0, + gly(my + my) 0, =0
l (6_91) = —gly(my + m;)sin 0,
= (m+my) 1501 + gly(my + my) 61 = —my1411,0,

o . l
Ondivise sur (my+m;)l, et ontrouve: 1,0, + g6, = — (m:—znlzz)ll 2
d (oL L (L0 + L,6,)
— |l —]=m
{dt 692 202\81Y1 2Y2

oL :>m2l2(llél +lzéz)+nglz.02 =0
k <E) = —-mygl,.sin 0,

= mzl%éz + nglz.ez = _mzlzllél
On divise sur my,1, et ontrouve: 1,0, + g8, = —1,0,
) . g . l1é1+g91 = _leuz (1)
Donc les 02 équations différentielles du mouvement sont :y = (mq+tmy)ly
0

2. On fait I’ hypothése que le systeme admet des solutions har monigues :

Donc: 64(t) = Aisin(wt + @) et 0,(t) = Aysin(wt + @)
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CHAPITRE IV Oscillations Libres des Systemes a plusieurs degrés de liberté 2010-2011

Telsque: A1, A,, @ et @', w est |’ une des pulsations propres du systéme.

01(t) = AISin((Dt + (P) == él = —w291
02(t) = Azsin((l)t + (Pr) = éz = —w292
On remplace dans les équations (1) et (2) donc :
2 myl; 2p _
{(g - Lw")6, T amyp @ 02=0.....(3)
(g - lzwz)ez - llwzel =0 (4)
L 3. Calcul despulsations propres: Onsupposequemy; =my; =m,l; =1, =1
l
(g - lw2)01 - szez =0..... (4)
(g - lw?); —lw’0=0..........(5

(o e

—lw?* g-lw?

Ces deux équations accepteront une solution si le déterminant =0

lw?
g-lo® -5

2
, J|=0e (g - lw?)* —%(lwz) = 0; C'est I’ équation aux valeurs propres.
—lw g-lw

w; valeurs propres.

2 (+ilw2
»nz 1 2\ _ 2 _ V2
(g — lw?) —z(lw) =0 =>g-lw —{ 1 L2
-—lw
'z
wzl = gl
l(1+ﬁ)
=4, g Ce sont lesvaleurs propres.
@2 = -2
L 3.Calcul desmodes d’ oscillations ou les vecteurs propres ;
Premier mode : on remplace dans (5) ou (6) par w?; = 1(1‘:;1)
Vz
( 1(1(1:? 1))
g V2
{(g—t(l 90 - 570, =
+_
L R
1 1 , .
(1- 1+%) 0, = s 0, = 0, =2 0,: Cest lepremier mode
2 V2
Deuxiéme mode : on remplace dans (5) ou (6) par w?, = l(l";l)
V2

Ontrouve: 8, = —/2 6,: ¢ est le deuxiéme mode.
[ 4, Calcul des solutions des équations différentielles :

Chacune des mouvements 6, et 8 posséde deux composantes harmoniques de pulsations w; ou w, .
Comme les équations différentielles sont linéaires, toute combinaison de solutions reste solution du
systeme.
Lasolution générale s’ écrit alors comme une combinaison linéaire des deux solutions.
{Ol(t) = AV2sin(wt + @1) + BV2sin(w,t + @,)
02(t) = A\/ESin(wlt + (pl) - B\/ESin(wzt + (pz)
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IV.1.4 Généralisation aux systemesan degrésdeliberté: Principe des opérateurs

1V.1.4.1 Energie cinétigue généralisée (Opérateur associé a I’énergie cinétique)

Un systeme an degrés de liberté posséde n variables: x4, x5, x3, ... ... Xp -
y 2 . L g sz . s 1 . 1 . 1 .
L’ énergie cinétique généralisée ; T=5m1xf + Emzxg + ---Emnx,zl

Sm=m,=-m,=m=T= %m(a’clz +x:4+ %) =>T= %mZ'i'zliciZ T ¢ )

X1
Soit le vecteur vertical (colonne) : |x) =| *2 | KET
x'n

Soit le vecteur horizontal (ligne) :(x| = (x4, X3, ... x,,) BRAS

X1 xl
(x|x) = (%1, %2, . X)) | 2 | = g X7 © (&%) = (kp, Xz, oK) | 52 | =214 = T = %m(«ﬂff)
% %,
) 0 m 0 0 ch 1
=T =70 x 43 ... %) 0 0 m - 0 || % |=T=(x|T|x)
) ) 0 i
o o0 0 .... m
T : Matrice carrée (nxn), Opérateur associé aT. Les éémentsde T sont déduits des dérivées%

V.1 .4.2 Energie potentielle généralisée (Opérateur associé a I’énergie potentielle)

1 1 1
T:Ekle +Ek2x§ + Eknxrzl .

Siky=ky=-ky=k=U=ck(F+xF+ ) = U=2k¥x? o (2)
. . ok 0 - 0
U=_k{xlx)=U=_(x|Ulx) . Tdque: U=[0 0 k - 0
o 0
00 0 ... k

U : Matrice carrée (nxn), Opérateur associé aU. Les éléments de U sont déduits des dérivé&%
[V.1.4.3 Equation difféerentielle

Le Lagrangien (lafonctiondelLagrange) : L=T — U = %(x|:r|5c) - %(xl‘ulx)
Equation de Lagrange: %(%) — (%) =0

0L _10 riis
9%, 20% 0¥
oL _ 10 e
axi N 26xi . .
Ona:——(x|T|i) = 2(L;|T|x) et — (x|Ulx) = 2(I;|U|x) avec I; vecteur unité.
(1] = (1,0,0,0, ....0),{Iy] = (0,1,0,0, ....0), ccc es e v .{L,| = (0,0,0,0, ....1).
= 71 = = (52) = wiTl)
oz, i =y, T Vi X
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oL

Fo —(I;|U|x) = (I;|T|x) + (I;]U|x) = 0, c'est|’'équation de Lagrange.

d2
STX)+Ux)=0=[X)+T 1 x)=0= —Ix) + L]x) =

L =71.1U: Opérateur associé au Lagrangien L, 77~1: Matriceinversede 7" .

1V.1.4.4 Equation aux valeurs propres :

Lasolution del’ equatlon Ix) + L|x) = 0 peut é&re sous laforme complexe : Ce/®t

d2
) = —w?|x) = —w¥x) + LIx) = 0 = (£— w?)|x) =
(L —w?)|x) =0 = Det [£L — w?I] =0, c’'est 'équation aux valeurs propres. w; : valeurs propres.

% valeurs propres :
L L
Exemple: £ = ( 1 12) ,

Lyy Ly
y 2 . L L 1 0 L11 - (1)2 L12
L’ équation aux valeurs pro r&:L—wZI:< u 12) — w? =
& brop Lyy Ly, (0 1) Lyy Ly, — w?
L1 — w? Ly,

2| =0= L1y — @*)(Lyz — @?) —Lyp.Ly; = 0

Lzy Ly; —w
A chague valeur propre w; correspond un vecteur propre Vl , w1 > V) ("11) wy =V, (m)

Li; — w? Ly, (iu) (0)
12

% Pour tw=wq:(L—w; )V1—0:>
L4 Ly; — w4®

Li; — 012)xq1 + L12X15, = 0
{( 11 19)%11 + L12X4, = xyq et X1?

Ly1xqq — (Lyz — @1%)x1, =0
L1 — wy? Ly,

% Pour :w=w;:(£L—w, )V2—0:>
L4 Ly; — wy?

| ()=

- le et sz?
V.1 .4.5 Solution des équations différentielle :
(x1(t))_A V,el(@1t+01) 4 B gl(w@2t+02) = A (Xu) ei@it+e1) 4 B (le) ol (@at+93)

® X12 X22

x1(t) = Axpqe/@11401) 4 By, ol (W2t+92)
X2 (t) = Axgpe/ @11+01) 4 By, el (W2t+02)
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