Terminale ST2S et STG.

Fiche de cours sur les probabilités.

Rappels:

L'ensemble des issues possibles, appelées aussi éventualités, d'une expérience aléatoire est appelé l'Univers. On le note Ω . Tout sous ensemble de l'univers est appelé événement.

Un événement ne comportant qu'un seul élément est appelé événement élémentaire.

Définir une loi de probabilité sur un univers Ω , c'est associer à chaque événement élémentaire un nombre p, appelé probabilité de cet événement élémentaire, de telle sorte que :

- Chaque nombre p vérifie 0≤p≤1.
- La somme de tous ces nombres est égale à 1.

Evénements particuliers:

L'événement impossible, noté ∅, sa probabilité est nulle.

L'événement certain, c'est l'univers, sa probabilité est égale à 1.

Pour calculer la probabilité d'un événement, on ajoute les probabilités des événements élémentaires qui le constituent.

Si chaque événement élémentaire à la même probabilité, on dit que l'on est dans un cas d'équiprobabilité. , la probabilité d'un événement A, est alors égale à $P(A) = \frac{nombre de cas favorables}{nombre de cas possibles}$.

Propriété

Quels que soient les événements A et B :

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

 $P(\overline{A})=1-P(A)$ où \overline{A} désigne l'événement contraire de A.

Si deux événements A et B ne peuvent pas se réaliser simultanément, c'est-à-dire si $A \cap B = \emptyset$, on dit que ces événements sont **incompatibles**, on a alors $P(A \cup B) = P(A) + P(B)$.

PROBABILITES CONDITIONNELLES

DEFINITION

A et B sont deux événements d'un même univers, de probabilité non nulle.

La probabilité conditionnelle de A sachant que B est réalisé, notée $P_B(A)$ est définie par $P_B(A) = \frac{P(A \cap B)}{P(B)}$.

On défini de même la probabilité de B sachant que A est réalisé par $P_A(B) = \frac{P(B \cap A)}{P(A)}$

Ces deux formules se lisent également dans le sens suivant :

 $P(A \cap B) = P_B(A) \times P(B) = P_A(B) \times P(A)$. (Ceci explique le principe multiplicatif d'un arbre pondéré.)

NB: $A \cap B = B \cap A$

Evénements indépendants

Définition

A et B sont deux événements de probabilité non nulle, A et B sont **indépendants** lorsque la réalisation de l'un ne change pas la probabilité de réalisation de l'autre.

A et B sont indépendants si et seulement si $P_B(A)=P(A)$ et $P_A(B)=P(B)$.

On a alors $P(A \cap B) = P(A) \times P(B)$.

Attention: ne pas confondre indépendance et incompatibilité.

Formules des probabilités totales (exemple)

Soit A un événement, comme $A \cup \overline{A} = U$ et que $A \cap \overline{A} = \emptyset$ on dit que A et \overline{A} forment une partition de l'univers U.

On a alors, pour tout événement B : $P(B)=P(B \cap A)+P(B \cap A)$.